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FOREWORD

This collection contains articles
written by staff members of the depart-
ment of radio engineering fundamentals
and antenna feed installations of the
Radio Engineering Division, Moscow Power
Institute, in 1971.

As to subject matter orientation, the
collection is divided into four parts.
Part 1 includes studies on problems of the
electrodynamics of inhomogeneous media.
Presented in Part 2 are articles in which
problems of the excitation and diffraction
of electromagnetic waves are examined.
Part 3 contains investigations on the re-
cording of electromagnetic radiation in the
microwave band. Part 4 considers problems
of the theory and application of dielectric
waveguides.

Because of the subject matter orienta-
tion of the collection, the references cited
are general. In this collection, a three-
digit arrangement is used in citing articles.
Thus, in referring to article 7, the number
107 is given, and in citing article 23, the
number 123.

Much of the work involved in collecting
the articles and editing the collection was
done by candidate of technical sciences V. V.
Shtykov. Considerable work in the technical
preparation of the collection was performed
by degree-seeking student I. T. Krylova.
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PART 1

ELECTRODYNAMICS OF INHOMOGENEOUS MEDIA

.V ..... .



SOLVING PULSED PROBLEMS OF ELECTRODYNAMICS IN INHOMOGENEOUS
MEDIA BY THE METHOD OF FINITE-DIFFERENCE NETS

Ye. A. Filatova

Modeling of Initial Equations in
the Case of Magnetic Type Waves

An examination is made of modeling with finite-difference

electrical nets of two-dimensional Maxwell operator equations

in spherical coordinates originating in cases when the con-

ductivity a(w) and the dielectric constant e a(w) of a plasma

medium vary with respect to radius and the angular coordinate 8.

Schemes of net models are presented in an investigation of

waves of the magnetic or electrical type.

When problems of the propagation of pulsed signals in

dispersive media are investigated, the initial Maxwell equations

for instantaneous values are best represented in the form of

operator equations. In the case under study, this is a

system of scalar operator equations. Here the system of

scalar operator equations can be written in the following

form:

Ur (Asn1)--rA()ACrE1'- pr, .



where (p )H. (p), H(p ) are the component images of the

vectors of electromagnetic field

intensity after Laplace

is the complex dielectric constant

of a medium in operator form

The resulting operator equations are valid, assuming zero

initial conditions.

The method of modeling operator equations consists of

writing the initial equations in the form of equations in

finite differences for a constant quantization step between

the nodes of a two-dimensional net mn and mn+l or mn-l and

mn, respectively, for the step AO between the nodes and m+ln

or m-ln and mn. By introducing the constant modeling coeffi-

cients kl, k2, and the following notation:

K.t'~Ca, Sc, ..,,a)
&r

seL,"E~pa4,frm(poAt"

As (2)

we can write Eq. (1) in finite differences in the form of the

following system:

U(p) -'.L (p).p _ ;'M K _ ,,)

6 (p) - (P) --.. (P) +.qr ,.). (3)
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The system of equations (1) can be reduced to operator equations

(8) of the voltage U(p) balance and of the current 07(p) balance

in the node of the two-dimensional net. The two-port networks

of the model can be calculated with the following formulas:

Z,,(pp = (4)

z.... @) p,.. AS, .. ,,

V ,(P) , •) (6)

* The model can be obtained if from the resulting equations (4),

(5), (6) the target is synthesized for the known law Ca(p).

For the case of a plasma medium, the dielectric constant

c a(p) and the conductivity a(p) in operator form can be written

as follows:

(P (7)3,49 0

(8)

where n e is the electron concentration in the plasma

v is the effective rate of electron collisions in the

plasma, 1/s

By the synthesis of the two-port networks, the model dia-

gram as shown in Fig. 1 was obtained.

The model elements can be calculated with the formulas:

a i (9)

J Arsin " (10)

3M~I K



Fig. 1.
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L~ K . sin amG (12)

S1- 3)

Modeling Initial Equations in the Case of Electric Type Waves

Operator Maxwell equations for this case can be written

in the following form:

, E. ,pj.H, * " -P& (14)

Modeling of system (14) is analogous to modeling of Eqs. (1).
The model diagram is given in Fig. 2. The model elements for
the case of a plasma medium can be calculated with the follow-

Ing formulas:

"Cm a - (15)

iwsq * AI,4' tr (16)

,iN i. S.,9"o'n ,,,'fe' .i'; (17 )

* .r &

tqa,, D (18)
C

(19)

A' 4

C a '
•*qg Ra'/ .mo....a, m. ( o20)

~r4  (21)

- -K5



In this diagram the components of the electromagnetic field

can be determined from the following relationships:

-Crm" f gi _ Ue(p) (22)

(23)

K. -'-&a(P), (24)

where k3, k4 are constant coefficients of modeling.

The solution of the practical problems can be reduced to

*setting up the diagram of the models according to Fig. 1, when

the required boundary conditions are satisfied [1].

The calculatiQis and the experiments showed that it is

entirely possible to exactly synthesize the modeling diagrams

in the frequency band exceeding the band used in actual radio

systems. The advantages of the modeling method consist of

the fact that in this case use is made only of quantization

along the coordinates along which the parameters of the medium

vary. In contrast to numerical methods, this method does not

require quantization with respect to frequency and to time.

The model is best constructed for a frequency distinct from

the working frequency of the pulse system. All elements of the

diagram and the pulse signals tested are recalculated to the

model frequency according to the principle of electrodynamic

similitude. The excitation condition is attained by connect-

ing a radio pulse generator to the corresponding node. When

the shape or duration of the radio pulse is varied, the model

elements remain unchanged. A pulse signal is observed in the

electrical circuit, at different points in it corresponding to

certain spatial points of the electrodynamic problem.

6



SOLUTION OF ONE-DIMENSIONAL PROBLEMS OF LONG-RANGE ELECTRODYNAMIC
PROBLEMS BY METHOD OF MODELING ON MODELS WITH SHORT ELECTRICAL
LENGTH

I. i. Chugunov and L. P. Abasheyeva

When a plane electromagnetic wave is incident at an angle

$ on a plane inhomogeneous layer, the complex dielectric con-

stant being &-j& and varying along the coordinate z, de-

pending on the polarization, the process can be described with

either the equation

or the equation

where

Using the discrete partitioning of the layer into m equal

parts Az, within whose limits the variation in the parameters

of the medium is insignificant, and by applying the principle

of electrodynamic similitude, let us model Eqs. (1) and (2)

[2].



By modeling the equations, we get the circuit diagrams

shown in Fig. la and lb.

For Eq. (1), Fig. la, given the values f(z)>O, and Fig. lb,

given the values f(z)<O. In these diagrams, according to [1]

Hence we have

it SO # ]13
AZ e-insv

or

L AK#h4( ()4)

K25  ?'
5

d2W (5)

For thp case when uns, -S eO , the inductance Lm+0.5
can be replaced with the inductance Cm+0. 5 determined with

the formula K, . - '(

In these circuits the voltage at the nodes determine the

magnitude of the magnetic field intensity at the corresponding

points of the inhomogeneous layer. The value of the current

%f determines the electric field intensity. By modeling

Eq. (2), we get circuits of the form shown in Fig. lb, for

f(z)>O, and Fig. ld, for the values f(z)<O.

As can be shown in Fig. lc and ld, in place of the con-

stant capacitance Cm in the parallel branch of the circuit

the parallel connection of capacitance Cm and resistance Rm,

determined with the following formulas, now appear:

8i



RE e .4b) , AV "(

C. .~,.#-K-1 (8

_(9)

For the negative values Sm+0 5 the inductance L is re-
_+.5 M+0.5-

placed with the capacitance

If

then the capacitance Cm must be replaced with the inductance

I>. . I ((12)

In this diagram, the voltage at the nodes Um determine

the value of the component of the magnetic field intensity,

and the currents , the value of the electric field inten-

sity.

In Eqs. (3) through (12), k1 and k2 are constant coeffi-

cients selected in accordance with the principle of electro-

dynamic similitude.

9



The design of the universal model (one-dimensional) makes

it possible to rapidly select different diagrams shown in

Fig. 1, and to match the model input with the generator output.

Additionally, there is the option of changing the model tri
according to the necessary boundary conditions.

When electromagnetic waves pass through an inhomogeneous

plasma layer, the attenuation constant a is the main parameter.

But when the electrical length of an inhomogeneous plasma layer

exceeds the electrical length of the model or when the inhomo-

geneous plasma layer has large attenuations, U.,. cannot always

be measured. In these cases, the problem must be solved by

* stages. To do this, the inhomogeneous plasma layer is divided

into parts.

A block diagram for deterraining attenuation by parts is shown

in Fig. 2a. The letters A and D designate the start and end of

the model, respectively; the letters B and M, the points dividing

the inhomogeneous layer into three parts: I, II, III. When the

problem was formulated, it was assumed that the plane wave is

incident from free space at an inhomogeneous layer and exits

into unbounded free space.

As can be seen in Fig. 2b, the solution is carried out to

completion, that is, first part III of the layer is considered.

The 'k, of the section of the model CD is determined by con-

necting the generator to the model at point C across resistance

R, serving for determining the complex amplitude of the current,

and a,,,, the attenuation constant for layer III.

By replacing the section of the model CD with the resistance

Mix. obtained, we determine aii and &&a and so on. If the number

of partitionings is m, total attenuation is obtained by summing

the attenuation constants am.

10



a a ., Be 7 "
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Fig. I.

a)

o laye

A ;C:I~ I,

b)

0 )

- d layerw

Fig. 2.
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When the signal passes through the inhomogeneous layer,

the phase of the arriving signal with respect to the input is

measured in the usual way: by connecting a phasemeter to the

model input and output. Shown in Fig. 2c is a phasemeter con-

nection diagram. But if the signal does not pass through the

layer, the above-described method of dividing the model into

parts is used. Then the total phase *AD will be

The phasemeter connection diagram for connecting the phase-

meter to each individual model part is the same as in Fig. 2c.

Measuring the phase by parts yielded good agreement with the

result of measuring the phase for the entire model. The error

of measurement was +10. Actual working with the universal

model showed that, by successively replacing the model parts

with their RU, because of rapid commutation of the model

elements the problem can be solved without significant degrada-

tion of solution accuracy.

12



REFLECTION OF A PLANE TM WAVE FROM A HOMOGENEOUS PLASMA
HALF-SPACE

I. G. Yakushkin and V. A. Permyakov

1. As is known, when a TM wave is reflected from an in-

homogeneous plane stratified plasma with the law of variation

of the dielectric constant E(e).o-a , c o , in the neigh-

borhood of zero e, resonance absorption of the field occurs.

In this case, the. modulus of the reflection coefficient is

different from unity even when there are infinitesimal heat

losses in the layer. Although the phenomenon of resonance

absorption has been investigated in a large number of publica-

tions [3-6], they lack detailed numerical results and approxi-

mate expressions suitable for determining the reflection coef-

ficient when there are arbitrary gradients of the dielectric

constant. Below we analyze the function of the reflection coef-

ficient of a TM wave reflected from a plasma half-space, with

the linear law E£a)e.-c,ak- when there are arbitrary gradients

of e.

The reflection coefficient for the magnetic field is defined

by the expression

Coo '(1)

where Z is the normalized (divided by free-space impedance)

impedance of the layer, equal to

13



Z -. " (C ) (2) 

and U(z) satisfies the equation

(i) - £in(3)

The angle of incidence of the wave e is measured from the

normal to the interface.

2. When there are arbitrary gradients of e, the solution

of Eq. (3) is sought for by the power series method at the

point =O and has the form [4, 9]

where

46-.-6
z A . ,a. AA h,
V.18*'si a~- B a '.O

The unknown function f(X) appearing in Eq. (14) is determined

on the condition that the solution of U(t) decreases as t-+

(e.- ). Different formulas are presented in [9] for determin-

ing the functions f(X) suitable for both analytic and machine

calculations. According to [9], when IXI,<l, the function f(X)

is equal, with at least an accuracy of 5 percent, to its value

when e=o: A(a)-(O)a O,'s.

Using this value of the function f(X) and retaining the

terms of the power series (4) to the order (k/a)2 inclusively,

we get the following asymptotic formula for skin impedance that

is suitable for large gradients of e:

14



Beginning with Eq. (5), we can show that when a>>l, the modulus

of the reflection coefficient takes on the minimum value of

JRlminl to 2.3(k/a)2 / 3 when 86arccos ImZ. With increase in a

Rmin tends to unity and is observed at grazing angles of inci-

dence.

3. When a<<k and for not very shallow incidence, the phase

integral method [7] can be applied for an approximate solution

of Eq. (3). The phase integral method solution of Eq. (3) can

be constructed in both the region of large positive z, that is,

where E<0, as well as in the region of negative z. After the

substitutions Uf -F; L.tJ5e&) , Eq. (3) takes on the- form

F(6)
where 04

For large C, in Eq. (6) the term (3/4) -2 can be neglected.
So the phase integral method solution of Eq. (6) for large nega-

tive E, selected on the conditions of decreasing in the domain

where e<O, takes on the form
e.yfA4 -C dx (7)

A

For large positive C, based on the radiation conditions, we can
write

F. f,(_j r-dl +R*f'-A d) (8)
A A

The coefficient A, in the case if we can neglect reflection

from the interface of media, can be determined simply on the

condition of interlinking with the incident wave. The reflection
coefficient of the wave R from an inhomogeneous half-space is the
principal quantity to be determined. For large values of X,

generally the energy does not penetrate to the point &=O. In
this case, Eq. (6) can be reduced to the Airy differential equa-

tion and it turns out that R=i. The situation is more involved

when XNl, since in this case the reflection is determined by the

15



function . This function has already three inflection

points, two of which are located at complex values of E.

To take this reflection into account, by using the phase

integral method it is important to be able to consider the

phase integral method approximation to be applicable even in

the neighborhood of a pole. For this purpose, the function

p(E) used in constructing the phase integral method solution

[7], Eqs. (6) must be selected so that the error of the phase

integral method solution remains finite when E=0. The selection

[6] of

(9)

leads to this result.

In the following treatment, the notation below will be used:

To apply the phase integral method in determining the coupling

coefficient associating the asymptotic representations of the

solution for positive and negative E, we must know the structure

of the Stokes lines, that is, the lines where

s ( is the root of the equation

L4Vp0 d" P(E)=0).

The pattern of the Stokes lines for the function p(Q) assigned

by Eq. (9) is shown in Fig. 1. The dashed line shows the con-

Jugate Stokes lines at which 9f 73 .0

For large negative &, the solution must be sought in the

form of (7), that is, in region IV the solution is of the form

16



~"--

2. I

T •

Fig. 1

In region Ill this solution is growing and therefore in the

transition to region II, in accordance with the conventional

rules for transition through conjugate Stokes lines [7,8], we

get

F- C'(g, f.)fea.3 * .1j) Cl..).

At Stokes line I we have

By selecting C so that the solution is brought to the form

(8), that is, LC.a J , where

M IJL. A-dJ#~A

we get

17



To derive the formula for the reflection coefficient, we

used the complex inflection point lying in the upper half-space.

Use of the lower inflection point does not lead to, and must

not lead to the same result, since Eq. (4), at point =O, has

a branch point of infinite order, therefore by bypassing this

point in the lower half-space, we arrive at another sheet of a

manifold plane on which the solution is defined.

The cofactor appearing in Eq. (11) ahead of the brackets

for the modulo is equal to unity and describes the phase shift

of the reflected wave. The cofactor in the brackets describes

the resonance absorption of the TM wave.

In the limiting cases, the solution obtained coincides with

.known results.

As can be seen from (11), R-i as X--. When X=O, the same

value R=i is obtained from the exact solution and from Eq. (11).

/

Fig. 2

18



4. Figs. 2 and 3 present the results of computing the re-
flectlon coefficient by the power series method (4) on a com-

puter (solid line), and their comparison with the approximation
of a strongly inhomogeneous plasma (5) (crosses) with the appro-

ximation of a weakly inhomogeneous plasma (dashed line) (11).

From a comparison, there must be close agreement of the approxi-

mation of the weakly inhomogeneous plasma with the rigorous cal-

culation when a<0.lk in the entire range of angles of incidence
for plane waves. From the graphs it follows that [R1 has a min-

imum equal to '0.7 when X^.0.5, and beginning with X 2.25, JRj is
in practice equal to unity. For large gradients of (l>da/k>

>0.1), the phase integral method is suitable in the range of
angles close to zero (840 to 600). The inaccuracy of approxima-
tion (11) at grazing angles of incidence in this region of
gradients of E is explained by the fact that in its derivation

the layer is assumed unbounded, while the numerical results were
obtained when the wave was incident on a half-space.

The approximation of a strongly inhomogeneous plasma (5)
proves to be suitable when a'k. It bears noting that when

a-(l to 0.5)k in the region of grazing angles of incidence,

this approximation agrees closely with the rigorous calculation.

Thus, in the aggregate the approximate solutions for the
weakly inhomogeneous and strongly inhomogeneous plasma make it

possible to describe the behavior of the reflection coefficient

of the TM wave for arbitrary gradients of e.



0.81

Fig.3

20



EFFECT OF LINEAR TRANSITION LAYER ON THE ATTENUATION OF WAVES
IN A PLANE STRATIFIED WAVEGUIDE

V. K. Polishchuk

1. Derivation of Dispersion Equations

Let us examine a plane-stratified waveguide, with relative

dielectric constant e r' which is a continuous even function of

the coordinate x (Fig. 1) and which, when x>O, can be expressed

by the formulas

f-1~ Q4-X)~ef Xed d

if a slit in a screen symmetrically positioned and symme-

trically excited with respect to the waveguide axis is excited

with a source, only even TM waves will exist in the waveguide [10].

There is a single component of the magnetic field Hy in the
y

TM wave propagating along the z axis. Considering that the de-

pendence of H on coordinates is of the form

14 - 4H(x) Can

(we assume that the field does not depend on the coordinate y)

21



Fig. 1

* I*

where k 0 is the free-space wave number.

The component of the electric field E z that is tangent to

the layer boundaries can be determined in terms of H(x) with the

formulas

4A 1

where k0 is the absolute dielectric constant of a vacuum. Let

us find the expressions for the functions H(x) and E(x) in dif-

ferent regions of the waveguide; in view of symmetry, we will

consider the field only when x>O.

Region T. O<x<Z

Eq. (1) takes on the form: H"+q 2 H=-. Solving it, for the

even wave types we get

H~).cos jx. (2)
. J11.. a22.-

* 22



The expression for H(x) is determined, strictly speaking, with

an accuracy to an arbitrary constant cofactor. But since the

amplitude of the waves in the waveguide is not of interest to

us, we assume that in region 1 it is equal to unity for H(X).

Region 3. x>Z+d

Eq. (1) takes on the following form: H"-p 2 H=O. With allow-

ance for the weakening of the field as x-, we find

(Xh) - H. 0. aif.(3

Region 2 [sic]. Z<x<t+d

In region 2 we have the equation

H- (4)

We will solve it using series in powers of the difference

x 0-x and, considering the width of region 2 to be small

(d/Z<<l), in the result we will limit ourselves to a finite

number of terms.

It is known [11] that the general solution of Eq. (4) is

of the form H(x) )

where u and v are two linearly independent solutions of Eq. (4),

represented in the form of the expansions

whose coefficients, determined from the recursion formulas,

are equal to, respectively:

,-f, o,- ,- ...
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Using these expressions, by limiting ourselves to terms not

higher than the first order of smallness in x 0 -x and d, we

get f

H().A,5)

By here equating the corresponding Eqs. (2), (3), and (5) at

the boundaries of regions 1 through 3, we get the following

system of dispersion equations:

p',,. ,..*¢ - t (6)

2. Analysis of Dispersion Equations

By neglecting waves of all types except for the principal

wave, we analyze system (6) for the symmetrical transition layer

If te convert to the quantities -p,.#Taft *p.hl, aretx ,

and J.5 , and if we use Eqs. (2) and (3), we can get the follow-

ing system of equations: as, i#€ :r'.?
(7)

cr the single dispersion equation for the longitudinal wave

number - 7 i,: . ° (g)

To find the solutions of the system (7) or Eq. (8), we assume

that they are known to use when 6=0 and 6f*O . We denote the

quantities a, T. and p corresponding to this case with a0, 0,

and po0, that is, under our assumption the following relationships

obtain:

. (9)

* * ~JI -(10)

Suppose now Su!--iee , and 6#0. Let us represent the longi-

tudinal wave number P0 in the form p=p 0 +pl1 and substitute it in

Eq. (8). By expanding the left and right parts of (8) in series

in terms of the small parameters 6, el' and p1 and referring to
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Eq. (9), we get

with an accuracy to the infinitesimals of the second order, where

We see that to the first approximation of the method of per-

turbations, the corrections to the constant of propagation due to

the transition layer and to the imaginary part of the dielectric

constant are additive and therefore can be examined independently

of each other. In addition, in the case of a symmetric transi-

tion layer these corrections are purely imaginary for propagating

wave types, that is, their phase velocities remain unchanged.

*Presented in the study [12] are the solutions of the "un-

perturbed" equation (10) for different a . When investigating

the behavior of the correction coefficients a and $, it is con-

venient for us to use Eq. (10) as well as system (9). And as the

*independent variable we select not the frequency g, but the

transverse wave number T

Let us find the critical values of a determining the reso-

nance in the cross-section of the waveguide at which p0=0.

By substituting p0=0 in Eq. (10), we get the equation

from which we find

By differentiating Eq. (10) at the point a.o, we can show that

when -akef the longitudinal wave number p0 is imaginary, and

when M*W4 it is real, that is, the critical value of for the

fundamental wave is 1,n and at va. if the frequency a takes

on the values within the limits f , all waves of the higher

types will be attenuating.
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WhenV<,e, r, the longitudinal wave number T takes on

values in the interval fEo.

The solutions of Eqs. (9) and (10) in the interval f-

(for the fundamental wave) are shown in Fig. 2 in the form of

the functions . .) and p, . Also presented there are

the plots for the coefficients a(T 0 ) and 8(T 0 ) determining the

behavior of the imaginary part of the constant of propagation

P, that is, the decrement of attenuation. From Fig. 2 we see

that for the fundamental wave the curve a(T0 ) trends everywhere

higher than the curve a(r 0 ), such that when there are identical

values of 6 and el, the resonance absorption will always be less

than the heat losses. In addition, when T0+ 'r/2, R-- (at higher

frequencies) the function 8(T 0 ) tends to a finite value, and

* a(rO), to zero. So by increasing the frequency (or, which amounts

to the same thing, the electrical dimension of the waveguide), the

resonance absorption can be made small enough.

In the other limiting case, when the frequency is near-

critical in value, we can find

In this case we observe the strong dependence of a on fre-

quency and, in addition, a- (T-T ). So at near-critical fre-cr

quencies, Eq. (11) may prove to be invalid for 8 obtained by the

method of perturbations.

Calculations show that in estimational calculations of the

attenuation of radio waves in an inhomogeneous waveguide the

losses due to the transition region can be neglected.
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CHARACTERISTICS OF RADIATION OF APERTURE ANTENNAS IN A
PLANE-STRATIFIED MEDIUM

A. P. Anyutin, V. A. Permyakov, and V. K. Polishchuk

4Presented in this study are working formulas and the results

of calculation of radiation patterns of a (circular) waveguide

located in an infinite metal plane under a dielectric layer and

a plasma layer. In deriving the formulas for the radiation

patterns it is assumed that: 1) the field distribution in the

open end of the rectangular (circular) waveguide coincides with

the field distribution of the wave H0 1 (H11 ) propagating in the

waveguide; 2) the reflection coefficient p of the wave H0 1 (H1 1 )

from the open end of the waveguide is given; and 3) the complex

dielectric constant of the plasma varies only along the normal

to the surface and is defined by the formula [3]:

•~

where w is the working frequency, ve is the effective number of

electron collisions in the plasma, and N (z) is the electron con-
e

centration in the plasma. These assumptions allow us to reduce

the initial problem to a problem of the radiation of a current

sheet in a two-sheet medium (Fig. 1). A method of solving this

problem consists in the following [13]: by applying the Fourier

transform to the wave equation with respect to the coordinates

x, y, and by satisfying the boundary conditions, a system of
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linear algebraic equations results for the spectral representa-

tions of the fields. The dependence of all spectral representa-

tions on the coordinate z is determined with ordinary differen-

tial equations with variable coordinates (in the case of an in-

homogeneous plasma).

- V - Vacuum

VDielectric

Fig. 1

By applying the inverse Fourier transform to the solution of

the system of linear algebraic equations, we get the integral

representation of the fields. To define the fields in the far

zone, the double integrals representing them are calculated

with the method of the integral [14]. The final expressions

for the components of the electric field in the far zone are

as follows:

a) rectangular waveguide

.4,. A~ CSA/)U4k1 * I)

C.A 0f.~/icg.(~)"~w

(. - O V(4))
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b) circular waveguide

. .P ~ t s/i V) Jx'ias,,kos--'Y

cos4(• 4 i., £k.2,4,) V'"w) *

a im two) e arh

In Eqs. (1)-(4), U(z) is the solution or the equation

da ~'CC)Sn"eJe (5)

with the initial conditions ZNelc Cins ostn at the

point z=Z2 ; V(z) is the solution of the equation

de 02- si aejV. 0(6)

with the initial conditions VXe)A!~ V(1,).-iA'.S,(4)COSe at the

point z=Z 2 ;
a is the dimension or the narrow wall of the waveguide

(waveguide radius)

b is the dimension of the wide wall or the waveguide

ez)is the relative dielectric constant of the plasma

E: 1 is the relative dielectric constant or the dielectric;

k0 is the wave number of free space;

L.7, are Bessel functions

are as shown in Fig. 1.
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The solutions of Eqs. (5) and (6) are sought for numerically

by the Runge-Kutta method [15]; where e1(z) is approximated with

the function rCs)sAe8,•  Specifying El(Z) in another analytic

form poses no fundamental difficulties in calculations.

The expressions found for the fields in the far zone can be

used in calculating the antenna efficiency n:

where P. is the antenna power,

P.Ro d .1 4.E~, 8

P0 is the power fed to the waveguide;

a) a rectangular waveguide

P W "

b) a circular waveguide

P. -,, ( .4r,-- ' ,)

These formulas for calculating the characteristics of

antenna radiation and antenna efficiency in the plane-strati-

fied medium were programmed for computations on a computer.

For X 0=6.28; Z2=0; Zl=l; Ae=41; a=0.03X0 ; 8=O.5XO0 ; d=0;

shown in Fig. 2 are the radiation patterns of an antenna in

the plane of an electric vector without allowing for plasma

(dot-dashed line) and for two laws of variation in the dielec-

tric constant of the plasma, the linear (solid line) and the

quadratic (dashed line). The calculated distributions E(z) are

also presented in Fig. 2. From the figure it follows that the

plasma layer leads to an abrupt drop in the relative radiation

level in the region of grazing angles of observation. We can

also note the weak dependence of the radiation pattern on the

law £(z) of the plasma, characteristic of thin, compared with
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the wavelength, inhomogeneous plasma layers with approximately

equal cumulative values of the electron concentration.

a a

-bA

Fig. 2
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APPROXIMATE METHOD OF DIAGNOSTICS OF INHOMOGENEOUS PLASMA

M. B. Aksenov, V. G. Kartashev, A. P. Mayorov, and V. L. Skachkov

Theoretical Analysis of Problem

Tn investigating plasma parameters there often appears the

necessity of determining the law of spatial distribution of the

main plasma parameters: concentration N and collision rate
e

V ef Known methods of microwave diagnostics of inhomogeneous

plasma (for example, [16]), permitting the determination of the

spatial distribution of concentration, are based on the geometric

optical approximation and therefore are not always applicable.

Rigorous methods of diagnostics (for example, [17]) are very com-

plex and have not yet been fully worked out. But in some cases,

when there is apriori information on the kind of distribution of

plasma concentration, the problem of diagnostics can be consi-
derably simplified. Examined in this study is a method of
diagnostics of a plane-stratified plasma based on the assumption

that the plasma concentration varies in space according to an ex-

ponential law, but the collision frequency is constant. The method

is based on measuring the coefficient of reflection from the plasma

when it is irradiated with a plane electromagnetic wave.

Let us examine the normal incidence of a plane electromag-

netic wave from a homogeneous dielectric with dielectric constant
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I on a plane-stratified plasma with a concentration that varies

in the direction of the z-axis according to an exponential law

.. (e) -V *,-"a ,o l

The plane z=0 is the interface of plasma and the dielectric.

Without constraints on generality, we will assume that the irrad-

iating field has the components Ex and Hy.

As shown in [3], the equation for the electric field inten-

sity in this case can be represented in the following form

a Ws
a 7ea ,)£E- (2)

where

The general solution of Eq. (2) with reference to (1) and (3)

can be written in the form

• c.:,.,(4)
where

-' I is the dimensionless coordinate

' is the dimensionless constant of attenuation

" is the plasma frequency when z=0.
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From inspection of the solution (4) for small values of the

arguments u ( .) it follows that 7,j i) e and therefore,

C2=0. Finally, solution (4) can be written in the form

From the boundary conditions when z=0 let us find an expres-

sion for the complex reflection coefficient I

Using the recurrence relationship for the Bessel functions, we

get a final expression for the reflection coefficient

Fig. 1

By representing the Bessel functions in the form of series,

after some transformations we get

I
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I

Fig. 2

By applying Eqs. (5) and (6), we can calculate the values

of the modulus and the phase of the coefficient of reflection

by the plasma for any value of the coefficient N0 and any value

of the parameter a. Some results of the calculations for E=l

are presented in Figs. 1 and 2, where for convenience in further

application, the lines of the modulus level and the phase of the

reflection coefficient are presented for the frequencies of the

probe field fl=10 GHz and f2=30 GHz.

Method of Determining the Plasma Parameters Based on Experi-
mental Data

Let us examine the problem of the practical determination of

the plasma parameters No, a, and from measurements of the

reflection coefficient.
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If the collision rate is small, so that the effect of colli-

sions on the reflection coefficient can be neglected, to deter-

mine the plasma parameters N o and a, it is sufficient to measure

the modulus of the reflection coefficient 141 and I at two

rates f and f2 ' Then from the plot shown in Fig. 1, we can

find the points of intersection of the corresponding curves

111 and Ira and determine the values of N and a.

When there are collisions in the plasma, the procedure of

interpreting the experimental data is considerably more involved.

In this case, to determine the three plasma parameters N., a,

and I. , we must measure three parameters of the reflected

waves. This can be either the modulus of the reflection coef-

ficient at three rates JI , jjI , and I4I , or the modulus ,~,

and the phase e of the reflection coefficient at the same

rate and the modulus of the reflection coefficient Jul at the

second rate. Analysis shows that preference must be given to

the second method, since the task of measuring the coefficient

of reflection from one part of the plasma at three rates proves

to be complex.

For the practical determination of the plasma parameters

in this case, we must calculate and plot the graphs cf the lines

of the level l *. ,0 I (Fig. 2) for different values of a,

thus constructing an album of curves, each page of which corres-

ponds to a certain a. Further, from the measured values of /X.j

GE , and IJ we seek the page in the album where all three

curves of the levels ItI. * .W intersect at the same poInt. The

coordinates of this point define the values of N and V , and

the page number, the value of a.

This method of diagnostics of an inhomogenecus rlasma

proves to be quite simple, but it is suitable only when the

plasma concentration exhibits an exponential distribution. If

the distribution of the concentration differs from the exponen-

tial, rigorous methods of plasma diagnostics must be employed.
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PROBLEM OF MEASURING THE PARAMETERS OF LOSSY INHOMOGENEOUS

DIELECTRICS

V. G. Kartashev and A. P. Mayorov

Measurement of Parameters of Dielectrics in Normal Probing

Let us examine the normal incidence of a plane electromag-

netic wave on the surface of an inhomogeneous plane-stratified

dielectric with relative dielectric constant e(z). We assume
the relative permeability of the dielectric p to be constant.

We take the direction of the coordinate axes and the polariza-

tion of the irradiating wave such that the boundary of the

dielectric coincides with the z=O plane, and the field has only

the components Ex and Hy.

From Maxwell's equations, for the complex amplitudes of the

field it is easy to derive the expressions

where

By performing the substitution of variables

Ir fp 0  Rr 0 j dD (2)

we derive an equation for the component Ex
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where

Employing the substitution = ,we get the final equation

C ( "- O.I U 0 (5)
where

z") z(6)

If the dielectric under study is not lossy (a=0), then

p(T)=l, and Eq. (5) takes on the form for which the inverse

Sturm-Liouville problem was solved in [181. In this case, the

problem of measuring the dielectric constant e(z) of a nonlossy

dielectric can be reduced to the following:

The complex reflection coefficient r(w) is measured as a

function of the field frequency; then the characteristic func-

tion of Eq. (5) is determined:

Then, according to [19], the spectral function p(X) is found:
. A'W&

and using the method given in [18] the unknown coefficient O(T)

of Eq. (5) is determined. Then, by solving Eq. (6), using Eqs.

(4) and (2) we can find the desired function e(z). Specific

procedures for solving this problem as applied to inhomogeneous

transmission lines are considered in detail in [20].

If the conductivity of the dielectric cannot be neglected,

this method of solving the inverse problem is not applicable.

In Eq. (5) the spectral parameter w 2 is not separated from the
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function of T; the solution of the inverse problem for equations

of this kind is not yet known.

Thus normal probing of an inhomogeneous dielectric with a

plane electromagnetic wave, using now available mathematical

methods, makes it possible to determine the dielectric parameters

only when the dielectric is nonlossy.

Measuring the Parameters of Dielectrics in Slant Probing

The slant incidence of a plane electromagnetic wave on a

plane-stratified medium is described with the equation [21]

sin -F.o (7)

where E'(z) is the complex dielectric constant of the test

medium (z>0)

E1 is the dielectric constant of the medium for [text

is missing]

is the angle of incidence of the wave

Eq. (7) can be converted to the form

F'+ CA - %()2F -o, (8)

where
• , )(9)

(4 - i Sins@,);

4ia

If the frequency w is fixed, the spectral parameter X and

the function of the coordinate q(z) are not related in Eq. (8)

as with the real and the complex function q(z). The method of

solving the inverse problem for Eq. (8) with the complex-valued

coefficient q(z) was worked out in [22]. To carry out this

method we must determine the complex reflection coefficient P as

a function of the angle of incidence I and find the function

m(X)
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M(A)e

which acts as the characteristic function of Eq. (8).

One feature of this method is the fact that when the angle

of incidence e varies, the spectral parameter X in accordance

with Eq. (9) can vary over the limits from 0 to 2/C. Thus,

the function m(X) proves to be specified not for the entire

semiaxis 0<A<-, but only for the interval (0,w2/c2 ). But by

suitably selecting the field frequency w and using the asymp-

totic relationships for m(X), the error caused by the incomplete

specification of the function m(X) can be reduced to zero.

A second feature of the slant probing method is caused by

the displacement of the beam of electromagnetic waves during

reflection, leading to a reduction in the measured reflection

coefficient and to loss of information about the deep-lying

layers of the dielectric. To reduce the influence of this

effect, it is best to irradiate the test object with a broad

beam whose transverse dimensions are much larger than the

assumed beam displacement.
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PART TWO

EXCITATION AND DIFFRACTION OF ELECTROMAGNETIC WAVES
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SOME SOLUTIONS OF MAXWELL'S EQUATIONS

G. T. Markov

Presented at the radio engineering section of the scientific-
engineering conference of the Moscow Power Institute in
April 1970

1. Suppose that in a spherical region with radius a, with

parameters of the medium a=0, e 0, "o (vacuum), there is given

the distribution of the volume density of electric currents
Ire
t. varying with time according to the law e". Imagine an

electromagnetic field in the form of the superpositioning of

oscillations of electrical and magnetic types:

* , uRR . The oscillations of the electrical type

are excited with the currents 7 , and the oscillations of the

magnetic type, with the currents where

Let us write out the expressions for the complex amplitudes

of the component vectors of current and field satisfying the in-

homogeneous Maxwell's equations:

Using the general expressions given in [13, 231, we get the

following relationships for one of the spatial harmonics.
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r Oscillations of the Electrical Type (Hr=O)

1- a Z'
j*~ jarn

sib W. s J (co5e ". e(' • (2)

0 g Z

lr, '(3)

~where

The frequency or the oscillations is determined from the

condition

where K~~. n=l,2,3,..

In Eqs. (2) and (J4), I), is a real function, finite, and

with its first and second derivatives on the interval from

r--O to r=a; outside this interval it is assumed equal to :ero;

pm(cos e) are adjoint Legendre functions,

v.(. ) , . are radial spherical functions

r, e, € are spherical coordinates
~The coefficients anm in Eqs. (2) and (4) are not defined here.

+ 4 4 -
-0 4 a aI

+Jt "
M7. . . .. .. .. in IS7 I a Z II



The validity of the solutions presented is verified by the

direct substitution of Eqs. (2), (3), and (4) in the Maxwell's

equation (1). The vectors of the fields Z* and Wa on the sur-
L face of the sphere r=a are equal to zero and according to the

theorem of equivalency [13] the electromagnetic field of cur-

rents (2) in the external region of the system (r>a) is iden-

tically equal to zero.

Thus, the system of currents (2) is nonradiating. The

power of the electromagnetic oscillation generators is reactive

and can be determined by the method of induced electromotive

forces with the following formula [13]:

+fjEdw (6)

By substituting Eqs. (2) and (3) in Eq. (6) and bearing in

mind that

rw.4l m ,.{ when m'+m

•0 2 when m'=m

V n 0m4 *Zr1) (cago P., M i@d
go #P , n0

WIPS when n'=n,

we get the following expression for the generator power:

p' 3(7)

We note that the distribution of the volume density of

electrical charges derived from the continuity equation
iri *w.Po* corresponds to the distribution of the volume

density of electric currents (2):
P° "E' - Ctn (n")" * -(z) (8) t
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Oscillations of the Magnetic Type (ErO)

H. w,.w H,.

where

U. .-& fo) - (tj .(K.,%b) P.," (1 1)

The frequency of oscillations of the magnetic type is

determined from the same condition (5). The function 1%)

is finite and continuous together with its derivatives on

the interval from r=0 to r=a and is equal to zero outside

this interval.

The validity of solutions (9), (10), and (11) is verified
by their direct substitution in Maxwell's equation (1). The

electromagnetic field of oscillations of the magnetic type on

the surface of a sphere r=a and outside this sphere is equal

to zero, that is, the system of currents (9) is also nonradia-

ting.

Substitution of (9) and (10) in (6) leads to the following

expression for the power of generators of oscillations of the

magnetic type

P". &.ja.hf nm!~j (12)

We note that dirj io , and therefore the volume density

of electric charges for oscillations of the magnetic type is

always equal to zero.
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2. Superimposing the electric and magnetic oscillations

makes it possible to reduce the system to the resonance state,

that is, a state in which the total energy of the electromagnetic

field of the system with time remains constant and changes from

electrical to magnetic energy, and vice versa. This will occur

under the condition that the total reactive power of the gene-

rators of electromagnetic oscillations is equal to zero:

P "P*+P.O (13)

From substituting (7) and (12) in (13), we get the expression

4hDr/ j Ad (14)

if we turn to Poynting's theorem for this system (as applied

to instantaneous values)

d (15)

then -e see that the left-hand side of (15), under condition

(14), proves to be equal to zero. Thus, the total instantaneous

power of generators of electromagnetic oscillations of the sys-

tem is also equal to zero and the total energy of the electro-

magnetic field of the system remains constant with time.

3. The functions 1t and IN are arbitrary in the sense

indicated above. We can, in particular, assume IN. JP&WJ-T

Then condition (14) can be reduced to the following:

If the following boundary conditions are imposed on these

functions:
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the electrical charges and currents at the boundary of the

system (r=a) prove to be equal to zero. So they will be con-

tinuous everywhere, including the boundary of the system.
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iTERAT!VE METHODS OF SYNTHESIZING REFLECTION ARRAYS

A. F. Chaplin, V. A. Mashkov, and V. F. Makkaveyeva

This paper examines certain iterative methods of synthe-

sizing methods of synthesizing arrays of radiators loaded

with reactances. Because there is no widely accepted name

for this class of arrays, we will call them "reflection"

arrays, as is done in a number of publications The formu-

lation of the problem of synthesizing these arrays was given

in the study [25]. In examining reflection arrays, the system

of Kirchhoff equations is conveniently written out in the form

CZJ- CE3<M )4 (1)

where [Z] is the matrix of the assigned intrinsic and muutal

impedances of the radiators

[E] is the unit matrix

<X> is the vector-column of the load reactances

<i> is the vector-column of currents in the radiators

<e> is the vector-column of the voltages induced by

the active radiator.

The solution of this problem of synthesis can be reduced

to finding the reactances <X> based on the given radiation

pattern of an array; here the currents <i> must belong to the
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set 7 providing the reactance of the impedances <X>. The appro-

ximation to the given radiation pattern can be root-mean-square

of uniform. The problem of the root-mean-square approximation

for a linear array consists of minimizing the function

Irm do.(2)

and the uniform approximation problem, to minimizing the

function

mom. IU()-C e)2 ".
0 -0 (3)

The final formulation of the problem of synthesizing a reflec-

tion array with arbitrary fixed geometry can be represented

as follows: minimize r (i1 , i 2 , ... , in) with respect to <i>

under the condition that <i>qe , that is, find the <T> such

that

ra".mgn a.,(4)

IL. mathematics there is not yet an algorithm capable of

solving problem (4) in the most general form, that is, when

r(i! ... , - 1n) is an arbitrary function, and .3 is a set with

arbitrary configuration. :n the case of reflection arrays,

the currents from the .7 must satisfy the following system of

constraints [25]:

Re fr. Ia. "V(5)

This article presents the results obtained using different

algorithms developed by the authors as applied to the problem

of reflection arrays.
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Let us assume we know certain initial values of the load im-

pendances of the dipoles <x> ° . Selection of the initial value

of the loads can be done with different methods:

a) First Method of Selecting Initial Loads

Let us solve problem (4) without allowing for the constraints
on the currents. For this purpose it is best to set up an over-

determined system of equations that can be solved for function (2)

by the method of least squares, and for function (3), by the

Stieffel exchange method [24]. After finding the currents <i>,

which generally do not belong to the set .7, let us calculate the

load impedances based on a linewise solution of system (1) and,

by eliminating the real part in this solution, we regard them as

the initial loads.

b) Second Method of Selecting Initial Loads

Conditionally we assume that the mutual influencd between the

dipoles in the array is weak, that is, the matrix [Z] is a diagonal

matrix. In this case, the currents from (1) are defined as

.m £ _ (6)

The right-hand side of Eq. (6) is a circle on a complex plane

[25]. If we denote the current, which is the solution of problem

(4) without the presence of constraints (5), by <i'>, as the ini-

tial value of the load impedances we select the value that mini-

mizes the expression

.,Min*

The solution of Eq. (7) has a simple geometrical significance

and analytically can be reduced to solving a quadratic equation.
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The simplest algorithm for solving the problem of synthe-

sizing an array in the root-mean-square approximation is given

in [26]. The problem can be reduced to minimizing the function
A:

,.Ao (8)

given the system of constraints on current (5). The algorithm

above presupposes that the matrix [Z] has an emphasized diagonal

and the current-column <i>(o) is known, which we adopt as the

zero approximation. The assumption that there is weak mutual

influence between the dipoles enables us to minimize (8) for

the k-th dipole, when there is the k-th constraint on system (5).

The Lagrange method as applied to this problem leads to a system

of two equations, one being quadratic, and the other, linear.

The solution obtained in this case does not exactly satisfy

conditions (8) and (5). For a revised solution, new computa-

tional cycles are carried out. This algorithm makes it possible

to compute the arrays of a small number of dipoles quite widely

dispersed in space (d/X>0.1). Its advantage is the simplicity of

computations. The desire to allow for the influence of only two

adjoining dipoles leads to much more complexity of computations.

Elaborating this concept, we now must minimize (8) for the k-th

dipole given the (k-l)-th, k-th, and (k+l)-th constraints on the

current from system (5). The Lagrange method leads to a system

of nine equations, three of which are quadratic. An incomplete

allowance for the mutual influence leads to a situation in which

the solution obtained will be inexact; and just as in the first

case, repeated computations will be necessary. When the mutual

influence between all dipoles is taken into account, a system of

3N equations must be solved, of which N are quadratic. In con-

trast to the first two cases examined, with an increase in the

number of elements, the matrix order also grows larger. Allow-

ing for mutual influence (partially or completely) leads to the

need to solve a system of nonlinear equations. Existing mathe-

matical methods enable this problem to be solved [27].
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We present our further exposition on the example of the uni-

form synthesis of a reflection array. For the case of the root-

mean-square synthesis, the algorithm functions quite analogously;

there will be a difference only in the normalizing of the radia-

tion pattern. The problem of uniform synthesis is formulated in

the form of problem (4), where F(i, in ) stands for function
l''n

(3), under the condition that the set 3 is defined by (5). Into

function (3) is introduced the complex normalizing coefficient C,

which must provide us with the convergence of the sequence <i>(o)
i(1)

, ..., <i n> to the desired distribution <r>C . Physically

it signifies the possibility of adjusting the radiation of the

array to the level that is optimal in the sense of the uniform

proximity of two curves: the normalized given radiation pattern

F(e):
--, (9)

*ti

and the radiation diagram of the array f(e). The magnitude of

the coefficient C is selected by solving the following auxiliary

problem for a known (calculated) current

A.mFe-)4 1 "1 (10)

a mn max IF().CJ)Z &,-a
C * ..0

The solution of problem (10) is obvious:

~(l)

The soundness of the introduction of this coefficient follows from

the fact that the left- and right-hand members of Eq. (1) can be

multiplied by an arbitrary number. The essentials of the proposed

algorithm will consist in constructing a sequence of current dis-

tributions, each term of which has a smaller quantity
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compared with A(kl).

To calculate the quantity A, we partition the interval of

angles on which F(O) and f(6) is defined with a closely spaced

net and we calculate A at the nodes of this net. Let us adopt

the calculated initial values of load impedances X' ...

and insert them into Eq. (1). From the system of equations (1)

we calculate the current

fZJ(12)

From Eq. (11) we calculate the normalized coefficient C(o) cor-
(0)

responding to these currents, and then the quantity A ) . In

the following text we leave unchanged all the initial values of

the load impedances of the dipoles, except for the load impedance

of the first dipole. By varying the quantity X, , each time we

calculate the values of <i>, , and A, attempting to find a

such that

.j~(X.)j~ (13)

To calculate the currents corresponding to each new value of the

quantity iX, generally speaking each time we must invert the matrix

'CZIhCE]XX If the number of attempts for the search will be

large and the matrix is large in size, this procedure requires

more machine time. This difficulty is cleared away with two

procedures:

1) The matrix (.EX) corresponding to each new value of

jx: can be obtained not by inversion, but by correcting the

inverted matrix corresponding to the previous value of iXr.
The correction is carried out using the following formulas [23].

Let



IZI E] X)'*."-D"3(14)

and { gel

p. {fZ( <X.. X "),.Y CM]

then t J,

where t- d "

2) The strategy of searching for jX must be such that find-

ing jX occurs in the smallest number of attempts. This optimal

strategy can be developed only by relying on the form of the

function A6(X,). For an arbitrary number of dipoles, the form

of this function cannot be analytically investigated, but for

two dipoles it is shown in Fig. 1. For the form of function shown

the optimal strategy was constructed using a Fibonacci series.

The function A£JX.) was computed at the following points:

. . () (15)
A4, A*.,A.

InEq (5) is the k-th member of the Fibonacci series 1, 1, 2,

3, 5, 8, ... ; a is the initial interval, equal to +0.05; +0.5; and

+5, which is derived in order to occupy a section to the left of

ix;. The condition
f(I J, -O'"(16)

is a criterion for converting from one term of the sequence to

another. The search for A, ends when (16) is not satisfied for

any values of the parameter a=+O.'05, +0.5, and +5.

To continue the process, we now record the value of j2, found

and carry out an analogous procedure for iX, , where all &*..*I ,

remain unchanged, as before. All the load impedances are selected

in this way.

We have described one cycle of the algorithm. The entire

algorithm consists of these repeating cycles. A quantity

55



analogous to (16) is the criterion for termination. The conver-

gence of this process to <T> can be easily demonstrated if a X

has the form shown in Fig. 1.

As an example, let us examine the synthesis of an equi-

distant reflection array if the given radiation pattern has the

following form:

47, jr e.

jX1 iz

.... u I (17)

Fig. I

Considering the plane e as the plane of isotropicity of the

lattice 4-(*.I, we get the following results by applying the above-

described algorithm to problem (3)-(4). For N=29 and d=0.25X,

when the number of points of partitioning of the interval

[0,ir/2] is equal to m=19, the desired load impedances <X> in

ohms as shown in Table 1 are obtained. The assigned and the

obtained radiation patterns are presented in Fig. 2. From Fig. 2

we see that the approximation proves to be quite good if we omit

consideration of the large side lobe.

In conclusion we must note that all the algorithms prooosed

in this article can be classed with local methods of analysis of
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multiextremal problems. To be fully convinced that the minima

found are global, we must apply more complex nonlocal methods

of analysis, for example, the I. M. Gel'fand method of troughs.

Naturally, converting to nonlocal methods is necessary when the

magnitude of the local minimum does not suit the investigator.

Table 1

X"" Ix 'X0e O 1Y4 WXe7 ,,, ,i "yeo
,- I I-is,-o . ,-,os- ls ,-i 5 ,-m-i s
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ENERGY METHOD OF SYNTHESIZING MICROWAVE ANTENNAS

A. F. Chaplin

At the present time, the problem of finding the current

distribution or the distribution of the tangential field com-

pcnent in the antenna aperture for a given radiation pattern

has been formulated and solved in the literature on antenna

synthesis. It must be stated that with this formulation of the

problem, the antenna must be represented as the distribution of

extrinsic current (electric or magnetic) sustained by current

or voltage generators. At the same time we know that micro-

wave antennas are characterized generally by a free excitation

mode [29], in which the antenna is fed a flow of incident power

arriving from a constant power output generator. In addition,

with the usual formulation of the antenna synthesis problem,

estimates of antenna energy characteristics grow in complexity.

This is evidenced by the fact that in most studies on synthesis

the antenna power is calculated as the integral of the square of

the radiation pattern module with respect to field intensity.

We can easily show that this estimate is invalid above all in the

calculation of the total and reactive antenna power. Examined

below is a formulation of the antenna synthesis problem in which

there is an association between the distribution of normalized

voltage in the far zone and in the antenna aperture.
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As a working model, we adopt a linear-array antenna with

length 2Z, arranged along the y-axis and irradiating a field in

the form of TM-waves with respect to the z-axis perpendicular

to the antenna. Let us examine the two-dimensional problem when

the field does not depend on the x coordinate. The free-space

field is represented in the form of a superpositioning of plane

waves; to do this, we use expressions from the monograph [13]:

F(m~) -awr

da

Here it is assumed that the observation point is located above

the extrinsic sources, whose spectral density is represented

by the function F(z).

Each plane wave produces a power flow perpendicular to the

antenna and equal to

Let us represent the quantity Rz in the form of the product of two
z

symmetrical cofactors

where

~(3~,W(9(u)*~L(2)

This representation is similar to the representation widely used

in microwave circuit theory for normalized voltage waves in wave-
1/2guides. The quantity Q(u) has the dimension of (watts)

As we know, the current distribution along the linear-array

antenna is associated with the field intensity in the far zone by
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means of a Fourier transform. In the same way, we can associate

the function 0(y) and #(&J, which are the power distributions to

the exponent 1/2 along the linear-array antenna and in the far zone,

respectively.

fa•(y) e" dy, (3a)

(Y) (3b)

if the antenna is located in loss-free space, the values of the

* function #(a) along the segment [-k,k] define the active radiation

power, and the values of this function at the semiinfinite segments

[- , -k] and [k,'] define the reactive energy stored in the near

field of the antenna.

Thus, the problem of synthesizing microwave antennas can be

posed and solved as follows: we assign the function9(soand with

the solution of the integral Fredholm equation of the first kind

(3a) we find the function P(y) from which we can calculate the

distribution of the flow of complex power along the antenna. If

the function q(a)'is defined along the entire W axis, to solve the

synthesis problem we can use the inversion formula (3b).

To solve the problem posed we can develop methods similar

to methods of solving the conventional antenna synthesis problem:

the Fourier integral method, the method of partial radiation pat-

terns, and the A. N. Tikhonov regularization method. It must be

noted that now all energy estimates will have an explicit physical

meaning.

In addition to calculating the flow of complex power along

the antenna, we can find the distribution of the surface impedance

or the input impedance at each antenna point. The surface impedance
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Z(y) can be found with the formula

_Z _) (4) _.__-___)

f-r~-r ~UVda

Let us dwell cn two properties of the functions 0(a) and

(y) we have introduced

1. ?unctilon tMa nd (y) exhibit the property of local

separation of power into active and reactive at each antenna

point. Let us take two r!ane waves with the wave numbers

l, and N : qeo8Jw 8 ) • Let f u,1IP and IUs.

Let us find the conditional cower flow at some point p(y,O) of

the antenna.

-. ,.. +(Ai "  at w- 'I[ e w

ae;lK) , 4W* -Ie. ;ICDS~ AI" * IB' -

The power -flow of two slow plane waves represented with the func-

tions el(Y) and 02 (y) remains reactive at each point on the plane

z=O.

Let 1.14K and lalao?. Then we have the expressions

'W,-=, ipe- 4:

The power flow of two fast plane waves represented by the functions

kl(y) and D2 (y) remains active at each point on the plane z=O.

But if we examine the power flow of one fast and one slow wave

/JaI and 0414X , it proves to be complex at some point p(y,O):
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2. The transition to the normalized voltage waves (y) signi-

fies the symmetrizing of the kernel of the intecral equation, which

associates E y(y) (or the surface magnetic flux,(V) with the dis-

tribution of the surface impedance Z(y) and can be derived from

Eq. (4):

EV (Y) --Vj Z(f /4"(tv (yVdv (5)

Actually, by designating £,)v'/(_Y) we bring Eq. (7) to
the form

where the kernel is already symmetrical.
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DIFFRACTION OF PLANE WAVES BY AN ARBITRARY SMOOTH CONVEX BODY
AND THE KELLER METHOD OF DIFFRACTION WAVES

N. S. Orlova and Yu. I. Orlov

A shortwave asymptotic representation for an electromagnetic

field was derived in [30], which is valid in the boundary layer

near an ideally conducting surface S in the region of deep shadow

and semishadow. Using the expressions for currents at the sur-

face of a body derived in [301, in this paper the diffraction

field in the wave zone in the shadow region is determined. The

solution obtained generalizes the Keller formula [31] for the

region of shadow and is utilized for refining the concept of

diffraction rays (the geometrical theory of diffraction) [311.

Analogous problems in the two-dimensional case were investigated,

in particular, in the studies [33-37].

1. Scalar Problem

Suppose that at a smooth convex surface a plane wave is

incident at Vse"". Let us examine the first and second boun-

dary value problems for the Helmholtz equation
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where :l, for the Dirichlet problem, and Qul, for the Neumann

problem (n is the normal to the surface S).

Near the surface S the field U(P') in the shadow region can

be defined with the formulas given in [301. In this case we use

the coordinates of the boundary layer v,u,n (Fig. 1), where u=

=0 QQ.QP., the shortest distance between point Q on the incident

wavefront and the point P0, and vauQ. , the distance along the

boundary of the geometrical shadow (Q1 is the initial reference

point), and n=P'P 0 , the distance along the normal -,( &,t) to

the surface S, whose equation is F-F(irw). The system of coor-

dinates u, v on S is semigeodetic; in this case, the first prin-

cipal auadratic form of the surface is of the form

dsag duh.hu(av) ded , where (W3ua. -( )' .

To define the field in the shadow region far removed from

the surface let us use Green's formula [38], with can be written

approximately as follows, with reference to the results in [39]:

.(2)

ahere R.IF- (.Ifl , and the integration is performed over the

shadow part S. of surface S. Here and everywhere in the following

text the first (second) row in the double formulas applies to the

Dirichlet (Neumann) problem.

The expressions for the quantities Land U s, which appear

in Eqs. (2) can can be called the "currents" I, follow from the

boundary layer formulas given in [30] when m=0:

, i (3)

where f*(Z) and g*(Z) are functions complexly adjoint to the
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Foch functions [40]

.. f(z)-. -

p is the radius of curvature of a geodetic (ray), and vconst;

in Eq. (3) and in the following treatment

h.,ia,( _P RJOp) and u,,au(Q.) .h (Q),

PON.P(q)(Fig. 1). The region of applicability for Eqs. (3) for

currents is the region of shadow and semishadow, all the way to

merger with geometrical optics formulas. By inserting (3) into

(2), when kR>>l we get

f Ow (4)
J•h, 4d , -

where i-8.R , and A is the region of variation of u and v corres-

ponding to the shadow part of the surface ST *

The double integral in (4) we calculate with the stationary

phase method. Here the classical stationary phase method [39]

turns out to be inapplicable. So first the interior integral in

v is computed asymptotically, and then the refined stationary phase

method is applied to the resulting integral in u [37]. As a re-

sult we get the following expressions for the field in the shadow

region at large enough distances from the surface S (kR0>>l).

(IM (5)

where f (Z0 ) and g (Z0) are functions complexly adjoint to the

Foch functions [37,40,41]

R0 is the length of the tangent PP0' 0 'p(uw)
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&4 V are the coordinates of the separation point of the

diffraction ray V-t-aei7-s-.ZaP( f4Lp.)cdu.

Eqs. (5) are a generalization of Keller's geometrical dif-A
fraction formulas, since they are valid also in the semishadow

region.

Vector Problem

Let us examine the problem of the incidence of a plane elec-

trom-agnetic wave -. ,'R-*j4J-*'e by an arbitrary, smooth

convex, ideally conducting body. The field in a boundary layer

with thickness Kn#M (M4lIi P z) near the surface of the body

in the shadow region is determined by the equations in [30]. To

determine the field in the shadow region far from the body sur-

face let us use the equivalency theorem [13], which with refer-

ence to [39] can be approximately represented, analogously to

(2), in the form:

-- , CS, (6)
4 .1sde"r(7)

where IL'J 8 is the surface density of the electric current in

the shadow part ST of the metal surface S. In accordance with

[30] we have:

-m •(8)

Here j. rj and 7,q are the unit vectors of the semigeodetic
system of coordinates u,v, where X*.C; H, - " are the

components of the incident field at the boundary points Q0
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(Fig. 1), J and Va, are the "currents" defined by Eqs. (5) in

the Dirichlet and Neumann problems, respectively.

From Eqs. (6) and (7), with reference to Eq. (8), as

kR>>l, we get

H ~ 10-11k-4 uHC Isla qdS, (9)
Sr

where By removing the

slowly varying cofactors from under the integral sign at the

stationary point u0 ,v0 , defined by the condition 4.1 , from

Eq. (9) with reference to (2) it is not hard to find the follow-

ing expressions for the field in the shadow region at large

enough distances from the surface S (kR0>>l)

0( EUs (F) + E:.r(~ V (U. V

wher *-jE~.E:,.~H;ar the normal components of the inci-
" 4.

dent field at the boundary points Q0 (Fig. 1), UI(r) and U2 (r) of

solution (5) of the Dirichlet and Neumann problems, W(u.) and

7,KV are the unit vectors of the principal normal and of the

binormal of the geodetic O,-const at the separation point P0 of

the diffraction ray PP0.

The region of applicability of Eqs. (10) is the same as in

the scalar case.
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Fig. 1.

68



DIFFRACTION OF A PLANE ELECTROMAGNETIC WAVE BY AN IDEALLY
CONDUCTING BODY OF REVOLUTION

N. S. Orlova

1. Let the plane electromagnetic wave

be incident on a smooth, convex surface of revolution S, whose
radii of curvature are much larger than the wavelength, and the

equation of the generatrix in a cylindrical system of coordinates

is of the form

or u'(i) (2)

According to [30], let us introduce near S the semigeodetic

system of coordinates v,u,n normally associated with it and
formed by the single-parametric family of geodetics v=const

and the curves u=const orthogonal to it; n is the length of the

segment of the normal to the surface. As we know [42], the tra-

jectories of the geodetic lines at a convex body of revolution

fluctuate between two parallels r=h and are governed by the

following equations

(3)
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where du is an element of the length of the geodetic, B is the

angle between the geodetic and the meridian, and h is the radius

of the smallest parallel that is tangent to the given geodetic.

The geodetic lines v=const are envelope rays at the surface

issuing from the boundary points of the geodetic shadow on S

and serves as an extension of the incident rays

K -;- (5)

(t is the unit vector of the envelope ray).

The equation of the boundary of the geometric shadow at the

surface is found by determining the common points on the surface

S and the family of planes tangent to it and parallel to the

vector of the wave normal of the incident wave

ca NO - 4 e eC * (6)

where

By solving jointly Eqs. (3) and (5), let us determine the

parameter of the geodetic h-AlP.,; )

Thus, for the geodetics v=const, Eqs. (4) can be written in

the form

a (8)

96 17 P-d (9)

where 9, and &, are determined by Eq. (6), and u. is the phase

of the incident field at the exit point of the geodetic at the

boundary of the shadow

o(10)
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Eqs. (8) and (9) are valid when **@ , where the angle of rota-

tion 9,, corresponds to the tangency point of the geodetic with

the parallel r=h. When 93,Ot , in Eqs. (8) and (9) we must use

the partitioning of the integrals in terms of the rotation point,

with reference to the symmetry of the geodetic with respect to

As the coordinate v it is convenient to select

z ip (11)

It is not difficult to show that the curvilinear coordinates

v and u selected are orthogonal. The system of coordinates

v,u,n, generally speaking, is orthogonal only near the surface.

The Lame coefficients of the resulting semigeodetic coordinate

L system, for small n, can be expressed as follows:

4~1 hm,, .A (12)
where

2. Following the study [80], let us write out expressions

for the diffraction fields and near the surface

E, (Z-" '(z Y. -).)
E.]
HH.e r , (NAP, V2 M " -)" .IE ' "

u-

6R6 is the radius of curvature of

the geodetic, R1 and R2 are the principal radii of curvature S
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V,(Z,Y) are functions complexly adjoint to the Foch func-

tions [43]

The quantities h., and Acan be calculated at the exit point of

the diffraction ray from the shadow boundary. E and N are

determined by the expansion of the components of the incident
field (1) with respect to the coordinates v,u,n at the shadow

boundary

E*~.~ 4 E . AE;,H.~~618 :-A4).(14)

where

The conversion from the semigeodetic system of the coordi-

nates v,u,n to the spherical coordinates 6, at the surface is

carried out based on the formulas

(15)

Eqs. (13) define the field corresponding to a single dif-

fraction ray arriving at the observation point. In the simplest

case, the field in the shadow region of the body of revolution

is formed by means of two diffraction rays enveloping the surface
on opposite sides. But the ray pattern of the field depends on

the specific form of the surface and in the general case can be
quite complex. In particular, investigation of the pattern of

diffraction rays at the ellipsoid of revolution conducted as

per Eq. (8) with a numerical method shows that the number of rays

arriving at the arbitrary point P of the surface depends strongly

on the elongation of the ellipsoid and on the angle of incidence

of the plane wave (Fig. 1).

Thus, calculation of the fields at each specific surface must

be preceded by the determination of the number of diffraction

rays arriving at different zones of the shadow region. The fields

of all rays are determined by Eqs. (13) and differ from each other

only by the values of the variables u and v arriving there.
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3. The solution (13) that we derived cannot be used near

the caustics (when h-0). In the cases when the ray pattern at

the surface has a caustic, the solution (13) must be analytically

extended into the caustic region, for example, using the method

given in [44].

In the case of the axial incidence (8'=o) of a plane wave,

an axial caustic always originates on the body of revolution of

arbitrary shape; to determine the field near the axial caustic

Eqs. (13) can be similarly modified [45]. In this case, h=O and

the diffraction rays are propagated along the meridians, so it

is sufficient to examine the ray pattern in the plane 9 'Q,*- ,si

(Fig. 2). At each observation point two rays arrive, each pro-

pagating along the shortest path, and the other envelopes the

"dark pole" (z=-z ), thereby acquiring an additional lead in
max

phase Tr/2.

As we can see from Fig. 2 and Eq. (12), for both rays we

have the expressions

hozr, 11, ao0, r, rt (16)

The coordinates of the rays arriving at point P from points FI and

F II can be written in the form

u4 .(f; f )4 €da". .gsf #.'df~(17)

where '.. i is the ray coordinate of the rotation point z=-Zmzx*

Assuming that the following is true near the axial caustic
ZzeZ'' Z. .fV"#du

and referring to Eqs. (16) and (17) and the additional lead in

phase at the caustic, let us represent the composite field near

the axial caustic as follows:

{jrm* )H% )" "(za Y' 4~h)

'IP, (W
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Using the familiar expansion of Bessel functions [46]

from Eq. (18) we get

H*

_____%V 
(20)

Here H., and E, are calculated at any point on the shadow boun-

dary. We note that Ao 4-.

Similarly, by referring to the mutual orientation of the

vectors v,u,n for the first and second rays, we get

We note that Eqs. (20) and (21), in contrast to Eqs. (13),

describe the total field, considering all the rays focussing

on the axial caustic.

The expressions we have derived for the diffraction field

of the plane wave are valid near the surface 
of the body of

revolution with an arbitrary shape; in the case of a sphere

they wholly coincide with the asymptotic exact solution [47],

including the caustic region. The resulting solution makes it



possible, by employing the reciprocity theorem, to derive formulas

for calculating the radiation characteristics of arbitrarily ori-

ented electric and magnetic dipoles located near the surface of

the body.
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PART 3

RECORDING ELECTROMAGNETIC RADIATION
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POSSIBLE USE OF THE MAGNETIC MOMENT OF SEMICONDUCTOR
PLASMA ELECTRONS FOR RECORDING CARBON DIOXIDE LASER RADIATION

3. D. Lobov, V. V. Shtykov, and Ye. I. Gratsianskaya

The presence of a nonlinear effect in a semiconductor caused

by the magnetic moment of conduction zone electrons was indicated

in [48]. Also made in this publication were estimates of the

magnitude of this effect in the millimeter wave band. In prin-

ciple, a frequency converter based on this effect in the infrared

band can be constructed using semiconductors with small effective

mass. From the results obtained in [48] it follows that to inten-

sify this nonlinear effect, the product of the frequency of the

effective radiation and the pulse relaxation time WT of the semi-

conductor must be larger than unity. This condition can be met in

the infrared band at room temperature; evidently this makes it

possible to solve the problem of the uncooled low-inertia detector

in this band.

In applications directing the permanent magnetic field parallel

to the propagation of electromagnetic waves may prove to be more

convenient. So in this paper, in contrast to [48], magnetization

will be found in the longitudinal propagation of plane electromag-

netic waves in a semiconductor plasma. Since in actual frequency

converters the semiconductor has finite dimensions, when we set

out to find magnetization we take into account reflections from

78



the interface. Let the semiconductor occupy a half-space that

has the boundary z=O, and let electromagnetic waves propagate

along the z-axis. Then the solution of the differential equa-

tion of magnetization presented in [48], with reference to the

transmission coefficient T of the electromagnetic waves in the

semiconductor, will be of the form

where are the constants of propagation at

the corresponding frequencies

.LtdN is the plasma frequency of the semi-

conductor

is the relaxation time of a pulse in

the semiconductor

is the effective mass of the conduc-

tion zone electron of the semiconductor

-EP is the dielectric constant of the

semiconductor lattice

V4 is the index of refraction of the semi-

conductor at the given frequency

is the attenuation coefficient at the

given frequency

in Eq. (1) we take into account the contribution to the mag-

netization of the semiconductor of only the wave for which the

direction of rotation of the electric field intensity vector coin-

cides with the direction of rotation of electrons in the semicon-

ductor.

Using the results obtained in [42], the square of the modulus

of the transmission coefficient can be represented in the form

V (2)

79



r3

.& iS t i40 2t is
Fig. 1

'I,

Q Is(2 (6 90 0 R

Fig. 2

80



S -- --- ' -V7'.- - 4-

where 4 YO 0

is the cyclotron frequency of the semicon-

ductor

With respect to Eq. (2), in Eq. (1) we isolate the part dependent

on the concentration of the conduction zone electrons 2/w 2 the

pulse relaxation time WT , and the magnetic field intensity (wH/w)

800) , (3)

where

F'
I L"l T r--- -*'P

Presented in Figs. 1 and 2 are the above-indicated functions.

From Fig. 1 we see that the maximum value of M 2 (W2 ) rapidly rises

when WT 0 >3. From Fig. 2 can be found the value of the permanent
2 2magnetic field for certain W0 and w 0 . From a comparison of

Figs. 1 and 2, it follows that to obtain the maximum value of

M2 (w2 ) when WT 0>3, the required magnetic field is approximately

equal to its value at the point of cyclotron resonance.

The variable part of the magnetization of the semiconductor

can be recorded with an induction coil enclosing the semiconductor

and located perpendicular to the external magnetic field. Let us

estimate the parameters of the frequency converter at X=10.6 micro-
meters, in which a semiinfinite, longitudinally magnetized plasma

cylinder with radius R>> is used.

The above-named condition allows us to use the results derived

above in making estimates of the converter parameters. If the re-

cording induction coil directly surrounds the semiconductor cylin-

der, the open-circuit voltage at coil ends is [50]
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where S, is the cross sectional area of a coil turn and If

is the number of coil turns. If the laser beam illuminates the

entire plasma cylinder cross section, then Eq. (4), with reference

to Eq. (3) takes on the form

In [5] it is considered that the intensity of electromagnetic

waves incident at the interface is Pek S , where W-& is the

characteristic impedance in vacuo, and S is the beam cross sectional

area.

Estimate calculations showed that at the output of the fre-

quency converter at X=10.6 micrometers (CO2 laser), for InSb with

m*=i.5210- 3 2 kg, ep=16, WT0=10 , the latter corresponds to

4=0.6 m2/V-s [51], when P =P2 =l W and to the coil turn number

N1  =10; the open-circuit voltage is approximately 5 microvolts

and is attained for a magnetic field intensity of 160,000 gauss.

To lower the magnetic field intensity, semiconductors with a lower

effective mass can be used. If an HgTe semiconductor or a ternary

compound Cd Hgl_xTe is used as the working material in the above-

described converter, with an effective conduction zone electron

mass of 0.00 3me, the open-circuit voltage for these parameters will

be approximately 26 microvolts, for a mobility u=2.5 m2/V.sec, and

a magnetic field intensity of 31.6 kilogauss.

Thus, utilizing Cd xHgl_xTe in this converter is preferred over

InSb. Synthesizing semiconductor compounds with an even lower ef-

fective mass makes it possible to substantially lower the required

magnetic field and to build detectors for X=10.06 micrometers with

magnetic fields realistically attainable at the present time without

cooling.
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CONVERSION OF CO2 LASER RADIATION TO MILLIMETER BAND

RADIATION USING THE MAGNETIC MOMENT OF CONDUCTION ZONE
ELECTRONS OF SEMICONDUCTORS

V. V. Shtykov

The problem of the conversion of infrared radiation

frequency in a semiconductor placed in a constant magnetic field

is examined in [113]. An induction coil is suggested in recor-

ding the variable magnetic moment, varying with time with the

difference frequency w 3 But there is some interest in investi-

gating phenomena when infrared radiation is converted to milli-

meter band radiation, since the frequency w 3 can be 10 1 to 10 l l

hertz (see equation for the magnetization vector M in [48]). The

high value of the difference frequency precludes the use of an

induction coil in recording the variable part of M. In this case

a system suitable for microwave applications must be used; in

the system an electromagnetic wave with the frequency w3 will be

excited.

Let us examine, by way of example, a variant of an infrared

radiation frequency converter in which a rectangular metal wave-

guide is used (see Fig. 1).

To solve the problem of wave excitation in a waveguide we will

assume that the nonlinearity in the semiconductor is small [48].
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This allows us to regard the magnitude of the variable part of

the vector N as a given function and set it in correspondence

to the outside magnetic flux with the complex amplitude

The complex amplitude of the variable part f w ,which appears

in Eq. (1), was found for two limiting cases of the propagation

of electromagnetic waves with frequencies w1 and w2 with respect

to the vector of the constant magnetic field H0 in [48] and [113].

From the results of these studies it follows that if the

principal waves are traveling waves, then.m( { is also a traveling

wave. This circumstance imposes a number of features on the con-

version of infrared radiation to a millimeter band wave. It turns

out, for example, that when several phase relationships are satis-

fied, waves from individual regions of the semiconductor may be

added together; this may lead to a larger conversion coefficient.

This phenomenon is an analog of phenomena that are discussed in

studies on nonlinear optics [54].

If we consider that the component M1('J) parallel to the field

H0 has a maximum magnitude, and that for the most efficient wave

excitation the vector 51 must be parallel to the vector H of the

excited wave [10], H0 must be oriented parallel to H. When the

principal type of oscillations in a rectangular waveguide is used,

the last-named condition can be satisfied by orienting H0 either

perpendicular to the narrow wall of the waveguide or along its

longitudinal axis. If also, as in [113], we consider the case of

longitudinal propagation of the principal waves, the variant shown

in Fig. 1 makes it possible to use longer waveguide specimens.

By employing the method outlined in [10] and Eq. (1), we can

find the complex amplitude of the electric field at the waveguide

center in the cross section z=L

Em j A J .(am (2)
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.In deriving Eq. (2) we neglected the effect of the semiconductor

wafer for waves in the waveguide, since a>>A. In the expression

derived the attenuation of waves in the waveguide was allowed for

by introducing the complex longitudinal wave number h=h'-jh".

If waves with circular polarization propagate in the semicon-

ductor, the direction of rotation of vector E of the waves coin-

ciding with the direction of electron spin, then /11() can be re-

presented in the form

Assuming that Mzo does not depend on x and y, by performing inte-

gration in Eq. (2) with respect to z from 0 to L, we get

.- .A ....

The dependence of the field E x0 on the length of the wave interac-

tion region can be described with a function conveniently repre-

sented in the complex plane (see Fig. 1), if we transform it to

the form

A.) u&-Ki) -expC&yV'-Aj(3)

by introducing the parameter fa(1-A-h2L*6A .

From Fig. 1 it follows that when t,*4* 8- , f(L) is oscil-

latory, and when a,°d>&K , the oscillations are weakly manifested.

Emphasis is given to the case A -oN* . In this case, f(L) is a

real variable. This regime corresponds to the condition of phase

matching, discussed in studies on nonlinear optics.

From Fig. 1 it follows that the deviation from this regime is

not large when Of.gb 46 . When this condition is satisfied,

Eq. (4) attains a maximum value when

h LL..- , where Z "
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The field amplitude Ex0 in this case attains a maximum value, equal

to .. p(E

where

F(z) ,Z'

Shown in Fig. 2 are kL., and F(Z) as functions of the para-

meter Z. From the figure it follows that it is best to function

when -. , which corresponds to the length 03

1length

Corresponding to the value Ex0 found when 974-e is the in-

tensity of waves with a difference frequency equal to
F &Z

Using the expression from M obtained in [113] and considering

r. diiv ;-K2 n. , where o+= 4. £Cc-')r.8  is an element

of the conductivity tensor; when h'>>h', the expression for

P(W 3;Lm) can be represented in the form

~WS
Po. .. -q P P.F Z) (5)

Here P1 and P2 are the intensities of the principal waves in the

crystal, Be is electron mobility, and WB is the characteristic

impedance of the waveguide.

Let us estimate the intensity of difference-frequency waves

when radiation from a CO 2 laser (ws47a.Eo' ) is converted to milli-

meter band radiation with wavelength equal to approximately 5.6

mm (see [1151). When a standard 4 millimeter waveguide is used

and with Z<O.01, the intensity P(w 3) is

If an InSb semiconductor crystal is used as the material, 770k

B can reach 70 m 2/s at the temperature of liquid nitrogen. When

Pl=P2=100 W, which is quite realistic for a CO2 laser, the differ-

ence-frequency intensity will be 5"10 - 10 W.
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Thus, there is the opportunity of the experimental observa-

tion of the conversion of coherent infrared radiation to milli-

* meter band radiation using the magnetic moment of the semicon-

ductor conduction zone electrons.
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CONVERTER OF FREQUENCY OF COHERENT INFRARED RADIATION TO THE
MICROWAVE BAND USING A WAVEGUIDE WITH AN ELECTROOPTICAL CRYSTAL

V. I. Bogatkin

The conversion of the frequency of coherent infrared radia-

tion to the microwave band can be attained by the excitation of

a waveguide filled with an electrooptical crystal with nonlinearly

polarized current at the difference (intermediate) frequency

9j. - r -W induced when heterodyne waves and infrared band sig-

nals are propagated in the crystal with the frequencies w- and

Wc' "respectively [52,56].

Below is outlined a method of calculating the parameters of

these converters with reference to the structure of the fields of

all three interacting waves and losses in the crystal; additionally,

the transmission coefficient is calculated with respect to the ex-

periment presented in [52]. The main symbols correspond to those

adopted in [56].

The complex amplitude of the electric field of the interme-

diate-frequency wave in the waveguide can be described in the

form [53]

Here the function L y) describes the structure of the field of

the excited wave type in the waveguide cross section, and the

slowly varying amplitude Cf(a) obeys the equation
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vZV+J f4(o)t)dxdy, 1

where
In - dxdy(2

is the normalized energy flow in the waveguide (neglecting the

spatial dispersion of the crystal, see [53]). Integration is

carried out over the waveguide cross section. The coefficient

o( is the attenuation coefficient with respect to the field of

the excited wave with allowance for losses in the crystals and

in the waveguide walls. The tensor (W.)describes the density of

the nonlinearly polarized current induced in the crystal when

acted on by the fields of the heterodyne wave and of the signal

wave with the amplitudes

•"Y) ee w' - and &e a t (y e I

respectively [53,54,55]. In Eq. (1), a---K 4 . Equations

analogous to (1) obtain also for the amplitudes of the heterodyne

wave and of the signal wave; when combined with Eq. (1), they

describe the interaction of waves with three frequencies.

For a small transmission coefficient of the converter with

respect to power, Eq. (1) can be solved by assuming the quantities

U. and Uc to be assigned. Considering the losses in the crystal,

we can write (a-U," "  , where the quantities Ur and

U apply to some initial crystal cross section. In this cas2 the

solution of Eq. (1) coincides with the solution obtained from Eqs.

(1) and (6) in [5], if the quantity mg, in [5] is replaced with

f M) dx dy (3)

and if ,., K@ . In particular, all results applying to the optimal

crystal length and the transmission coefficient as a function of

the parameters (introduced in [56]) derived from analyzing the
idealized case of the interaction of plane waves are valid for

conversion in the waveguide. The results of the width of the
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radiation pattern in the passband, obtained in C56], can also be

extended to the case of conversion in the waveguide.

Now let us calculate the transmission coefficient of the con-

verter as applied to the experiment conducted in [52]. In it, the

radiation from a CO2 laser, containing oscillations at two frequen-

cies, was focussed with a long-focal length lens at the center of

a rectangular waveguide filled with GaAs crystal and excited H10

waves. By setting the waveguide cross-sectional dimensions equal

to a and b, with respect to the x- and y-axes, respectively, we can,
describe the fields of laser radiation in the crystal in the form

where R is the effective radius of the laser beam entering the

crystal in the z=0 cross section. Strictly speaking, these func-

tions cannot describe the field of waves propagating in the wave-
guide, but when R<<a,b and assuming that the geometrical optics is

valid for the laser radiation in the waveguide, they are a good

approximation. The eigenfunctions for the excited H10 wave we can

write in the form jn-,

where Wb is the characteristic impedance of the waveguide filled

with an isotropic GaAs crystal. To construct Eq. (1), let us write

n., according to Eq. (2)
fla* I fdv E dx if (5)

Let us compute the integral in Eq. (3)

E~~ on n E. y [,kftS t *dfdIt 'v~ (6)

where

IV (7)
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*When R<<a,b, Eq. (6) can be easily computed:

By mltilyin Eq (1 7 f~E. (8)

By multiplying Eq. (1) by E0 and inserting in it Eqs. (5) and
(8), we get an equation for the complex amplitude of the field

of the H10 wave in the waveguide center

dZ A a (9)

If by selecting the waveguide dimension a the condition Ak=0 is
satisfied and if the crystal length is small, such that we can

neglect the attenuation of all waves, then by assuming in Eq. (9)
that We%- f.@ given the boundary condition jV.-O we get the

solution

(10)

Considering that the power Pa)transported by the excited wave

in the z cross section is given by Eq. (5), when in place of

E0 we must substitute E(z), and also that the amplitudes Er0
and E are associated with the powers Pr and P of the hetero-

c0 Co
dyne wave and the signal wave within the crystal at the converter

input by the relationships

where Wr, We are the characteristic impedances of the crystal for

the corresponding waves, we get the transmission coefficient with
respect to power when the crystal length is z:

Ca&I MSAW&,W (11)

Let us compute the nonlinearity parameter m in Eq. (11).

The components of the nonlinear polarization vector for the GaAs
crystal in the crystallographic coordinate system x',y',z' are

equal to [54,55]
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In experimental conditions, in [52] the axis <111> of the crys-

tal is directed along the y-axis of the waveguide, so the pro-

jection of the vectors of the heterodyne and signal fields onto

the axes x',y',z' will be

o k tc

As a result, analogous projections of polarization prove to be

equal to each other

P'M a*p P Mpua d*t efir fly- me *

Thus, the vector is directed along the y-axis

4,J4E jftl, J
from which we get an expression for the parameter

Eq. (11) can finally be written in the form

< u Cv W, WeW&Pr-- (12)

The numerical calculations based on Eq. (12), relying on data in

[52] yield results that agree with those obtained in [52].
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In conclusion we present plots (Figs. 1-4) characterizing

the change in power of the intermediate-frequency wave at the

converter output when the crystal length changes, with allowance

for losses and the mismatch of phase velocities. The plots were

constructed on the basis of the formulas derived in Eq. (5) when

an analysis was made of the interaction of plane waves. They

were normalized along the x-axis to the optimal crystal length,

and along the y-axis, to the transmission coefficient, given an

optimal crystal length. The symbols correspond to those adopted

in [56].
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CHARACTERISTICS OF THE CONVERSION OF COHERENT INFRARED
RADIATION TO THE MICROWAVE BAND IN A RESONATOR CONTAINING
AN ELECTROOPTICAL CRYSTAL

V. I. Bogatkin

Conversion of the frequency of coherent ififrared radiation

to the microwave band can be attained when an electrooptical

crystal is placed not only in a waveguide [52,56,115], but only

in a microwave resonator [56]. Certain properties of these con-

verters are investigated in this article by analysis of ideal-

ized cases. The symbols and the subscripts correspond to the

symbols and subscripts adopted in [115].

The power transmitted by nonlinearly polarized currents

with the frequency J., to the excited type of resonator oscilla-

tions is

here integration is carried out with respect to the resonator

volume,

(2)

is the density of the nonlinearly polarized current; lwm)

is the complex amplitude of the electric field vector of the

excited oscillations; tJP) is the function describing the
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the spatial distribution of the field. The amplitude cofactor

U, , assuming that ", equals the resonance frequency of the

. resonator, is given by the expression [53]

E; .wV (3)

where

E 4_ N.- d (4
V WN l"

is the normalized energy of the resonator field; Q, is the Q

of the loaded resonator.

By substituting Eq. (2) in Eq. (3), and then Eqs. (2) and

(3) in Eq. (1), we get

Eq. (5) yields the total power transported by the nonlinearly

polarized currents. Part of this power is dissipated in the re-

sonator owing to the losses, and only part of it can be used in

the form of a signal in the load associated with the resonator.
We can show that the maximum power released in the load is

where Q is the Q of the unloaded resonator. Therefore
0I

PLO J, wd (6)

Let the resonator be formed of two infinite planes whose

enclosed space is filled with an isotropic, nonlinear dielectric

with thickness Z . Let us assume that the plane TEM wave with

field components SI s..io

Hn.. .. ...... ..... . (7)
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is excited, where z is the coordinate measured along the z-axis

perpendicular to Vhe resonator walls; KI.a.n m ,..3... ;

the unit vectors 1. and Iz are perpendicular. Let us calculate

the quantity W, InEq. (4):

W, 4sp.. 'sinaKr~ .iE'css'VrN) dta
.*Se.." "(8)

Here S is the cross-sectional area of the resonator. Physically

speaking, it is reasonable to calculate the power received per

unit resonator cross-sectional area, so in the following we will

assume-S1 to be equal to the unit area. When calculating

Eq. (8), it is also assumed that E6and f4. do not depend on

frequency near &.

Excitation of Currents by a Traveling Wave

We assume that plane heterodyne and signal waves of the TEM

mode propagate through the resonator along the z-axis. In this

case, we assume the resonator walls to be transparent to these

,waves. To some extent this case corresponds to the actual situ-

ation, when signal and heterodyne beams enter and exit through

holes in the resonator walls. The wave amplitudes, with allowance

for attenuation, we write in the form

EiEt e'S E, EaEe e (9)

By inserting Eqs. (8) and (9) in Eq. (6) we get the power received

per unit resonator area:

/7,.f ?w~w n n=,, 1)
flaa. WI*f0f~.adf (10)V

where m* .et;f;oft.. ; K.Or-r 1 W, are characteristic

impedances. nm°nc are the Poynting vectors of the correspon-

ding waves after their entrance into the resonator (when z=0).

The function f is equal to the following expression:

f(PII;,ff99) e ____ ______ _____ (11)
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Let us determine the conditions under which Eq. (11) is at a max-

imum; in view of the complexity of function f, let us limit our-

* selves to an approximate analysis. The expression in the square

brackets in the denominator of Eq. (11) has a minimum with change

in k, which is attained when

AKa aa (12)

The numerator has a maximum when the term in it is positive and

lcOs Otla 4 This requires that K,-fj , where q is a positive

integer. By equating both values to k, we find that we must have

in order that the denominator minimum and the maximum of the

numerator in Eq. (11) coincide.

005 -6

Fig. 1

In calculating q, it was assumed that /,,'f . From the latter

it will be clear that aL l is necessary in order to maximize f,

therefore q<<l.

So, given the condition '/A.,4, we cannot carry out Eq. (12)

and q=l at the same time. So when k changes, the maximum of the

numerator and the minimum of the denominator of Eq. (11) do not

coincide. Further analysis shows that under condition (12) the
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value of f exceeds by about one order of magnitude its value

when . So we assume that Eq. (11) is at a maximum

when KOK , then we get

A plot of function (13) is given in Fig. 1 (curve 1). The curve

has a maximum when

(14)

is approximately equal to 0.1.

Thus, the maximum possible transmission coefficient of the

converter under study is

.. .o, . ww no.at E AR " ( 1 5 )

Excitation of Currents with a Standing Wave

Let us assume that in the resonator under study the hetero-

dyne and signal waves are reflected from the internal wall when

z=t and, on propagating in the opposite direction, exit from

the resonator when z=O. Then for the heterodyne and signal waves

we will have the expression

,e e- e e e-(16)

(17)

The minus sign in front of the second terms takes into account

the loss of a half wave at reflection.

When computing the componentsp , in Eq. (6), we will

consider only the products of the first and second terms in

Eqs. (16) and (17). The rejected terms correspond to the weak

interaction of the heterodyne and signal waves moving in opposite

directions. By calculating Eq. (6), we arrive at an expression
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analogous to Eq. (10):

fln.. Lw w nf,.fn.l 4  at (18)

where

-r n ~ '(19)

Analyzing this function at the maximum, like the above analysis,

again leads to the condition of phase matching Kgs. Here the

function is transformed to

Its lotis gvenin ig. "'~' ~(20)

Its plot is given in Fig. 1 (curve 2). It attains a maximum

equal to 0.072 when ct=2.5. The maximum transmission coefficient

in this case is

c~m~o m~ w. n. (21)

By comparing Eq. (21) with Eq. (15) we discover that using

the reflected heterodyne and signal waves led to a reduction of

the transmission coefficient by a factor of 1.4 and to an increase

in the optimal resonator length by a factor of 2. This result

is explained by the fact that, when reflected by the resonator

wall, both waves (heterodyne and signal) change phase by 7.

Since Eq. (2) includes the products of wave amplitudes, the re-

flected waves will produce, near the wall, a nonlinear polariza-

tion vector in the same phase as the incident waves. The field

of the excited oscillation (7) is formed by two waves moving in

opposite directions and varying, at reflection by the wall, in

phase by 7r. As a result, if, for example, the heterodyne and

signal waves moving in the positive direction of the z-axis give

up their energy to the intermediate-frequency wave moving in the

same direction, after reflection of all three waves the energy

will be pumped in the opposite direction because of the disturbed
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matching of the phases of nonlinearly polarized currents and the

electric field. So the conversion efficiency suffers. The pre-

sence of losses for the heterodyne and signal waves compensates

the effect of the reverse transmission of energy, leading to an

increase in the optimal resonator length.

Let us assume that the effect of phase discontinuity at re-

flection is eliminated. In actual conditions this can be achieved

by making a hole in the resonator wall at z=X and positioning the

mirror reflecting the heterodyne and signal beams in a location

outside the resonator at a distance of one-quarter intermediate-

frequency wavelength in the dielectric. When making the calcula-

tions for this case, a plus sign must be placed at the second

term, for example, in Eq. (17) (we neglect the attenuation in the

dielectric section projecting from the resonator). Then in Eq.

(18), in place of fl, the function

-L (22)

will appear. As before, it will have a maximum at K'*equal to

C(d &z2f(tod) (23)

By comparing Eqs. (23) and (13) we see that when there is

reflection with compensation of the half-wave loss, the optimal

resonator length is reduced, and the transmission coefficient

is increased by a factor of 2 compared with the case of excita-

tion with a traveling wave.

We note that compensation of the half-wave loss is not re-

quired when there is excitation by TM waves (for example, in a

cylindrical resonator [56]).
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Comparison of Transmission Coefficients in Waveguide and
Resonator Converters

If losses in the resonator are caused only by losses in the

dielectric, we can find that

Q (24)

where c. is the attenuation coefficient of the amplitude of the

plane wave with frequency c, in the dielectric.

The maximum transmission coefficient in the case of excita-

tion with a standing wave with compensation for half-wave loss

will then be written as

7(25)

We can show that the idealized waveguide converter (examined in

[56]) with a plane wave has a transmission coefficient equal to

w* w.w (26)

where J(w,) is a function in Eq. (12), in [56].

Let us inspect the ratio

where anl/r.* . When U-4 and Ak'=O, the gain (26) in the

transmission coefficient, for a resonator, is approximately

1.5. Calculations show that the optimal resonator length in

this case is also shorter than the waveguide, by a factor of 1.5.

From Eq. (27) it follows that G" can exceed GMb without

bound, if W- 0.
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RECORDING SUBMILLIMETER AND INFRARED RADIATION WITH THE
TUNNEL METAL-TO-DIELECTRIC-TO-METAL (MDM) JUNCTION

G. D. Lobov and A. N. Nenashev

L

Characteristics of Tunnel Current for Weak Signals

Current flowing by tunnel penetration through the potential

barrier in the MDM contact is defined as follows [57,58]:

here e and m are the electron charge and mass; k is the Boltzmann

constant;n is the Fermi energy; T is temperature in degrees Kelvin;

v is the applied voltage; h is the Planck constant; E is the
x

fraction of the electron energy in the direction perpendicular

to the potential barrier; Em is the maximum electron energy;

S is the contact area; Z is the dielectric thickness;

X--Af - l is the probability of tunnel pene-

tration of an electron with energy Ex; O(x) is the shape of the

potential barrier; and A -4xP6)/ .

When T>QK, the representation of D(E x ) in the form [59]x

5(2)
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If -CuTx'(2f) qT , we can neglect the third term in Eq. (2).

In L58] it is shown that this condition is usually satisfied
and the coefficients b and c are defined by the following expres-

sions:

* 5.Aft~ ~y.(3)

If the voltage O.Vvncj is applied to an MDM system, the detected

sigrq', Is determined by the following expression [57]:

AV . 9 V.' ,,V. (4)

wnere Ry is the contact impedance for the tunnel current.

Using the representation of D(E ) in the form of Eq. (2)x
and expanding Eq. (1) in a series in terms of v, for the coeffi-

cients in Eq. (4) we get the expressions

. # ("((5)

Irk (6)

. Sj7L . (r.)¢Ci dx 4Tc0)
C. " TC.F sb"s T (67)

JrXTC,(7)

In Eqs. (5)-(7), the first digits in the subscripts at the coef-

ficients b and c correspond to the following: "2" is the forward

characteristic and "1" is the reverse characteristic. The second

digits give the order of the derivative of the expressions in

Eq. (3) in terms of the argument ev.

Allowing for the Effect of Mirror Image Forces

We will adopt the expression for the potential barrier with

allowance for the mirror image forces, as in [60], in the form
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9 ,y'P)e-u (X) * Vij (8)

where , ;a"•

where7T ; 5 is the relative dielectric con-

stant; and DT(x) is the shape of the trapezoidal barrier.

Since it is difficult to derive expressions for b and c

in final form from Eq. (3) with reference to Eq. (8), let us

derive an approximate expression, considering that X is a small

quantity. Expanding Eq. (3) in series in terms of X , after

substituting Eq. (8) in it and neglecting the terms proportional

to X we get

r
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Fig. 1.

(1) Contact temperature 01K
(2) Contact temperature 300 0 K

Shown in Fig. 1 (1) io the rectified voltage as a function of

the dielectric thickness, derived from Eqs. (4)-(10). From the

functions shown it is clear that the effect of the mirror image

forces is quite large and even when e<8, a signal with either

positive or negative polarity can be obtained.

Allowing for the Thermionic Emission Current

If the contact temperature of an MDM is higher than 0°K,

within the metal there will be electrons whose energy is larger

than the work yield function *. On leaving the metal, these

electrons produce the thermionic emission current [61]
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S. C eop (-p') - -p(

where 1m and 2m are the potential barrier maxima in metals over

the Fermi levels.

If the voltage v is applied between the electrons, then

and

By defining lm analogous to [611 for an electrode with a smaller

work function, negatively charged, we find that [61]

..(12)

If the electrode with a larger work function is negatively charged,

then

By expanding Eq. (11) in series in v, using Eqs. (12) and (13),

we will have the following expression for the rectified voltage

due to thermionic emission

A V .V( 1 4 )

where

R hCT J (15)

By representing aZ, and , as current generators with internal

impedance R, and R,, for the total voltage at the contact

(R.II , ) we get the expression
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Shown in Fig. 1 (2) are the results of calculation based on

Eq. (16) with the involvement of Eqs. (4), (7), (14), and (15)

for the contact temperature T=3000 K. From the figure it is clear

that up to a certain dielectric thickness the effect of temperature

is small. But when the dielectric thickness is increased, corres-

ponding to an increase in contact impedance, a second change in

the polarity of the rectified voltage is possible.

Experimental Results

The experiments were conducted with a point contact between

a 15 micrometer tungsten wire and an aluminum base coated with

a natural oxide layer. The tungsten wire was sharpened electro-

lytically and the tip was monitored with a microscope. The mech-

anical system made it possible to finely regulate the wire pressure

on the base, by varying the thickness of the dielectric film. The

relative changes in the dielectric thickness were monitored by the

change in the contact at direct current. The following device was

used as supplies of microwave oscillations: a klystron operating

in the 5 mm range, and a CO2 laser. In both cases amplitude modu-

lation of the radiation was employed. In the experimental part of

the study, the magnitude and shape of detected pulses were investi-

gated as a function of dielectric film thickne'ss.

Shown in Fig. 2 is the signal magnitude as a characteristic

function of contact impedance on exposure to radiation with X=5 mm.

As we can see in the figure presented, the polarity of the detected

signal varies by a factor of 2. In accordance with the theoretical

assumptions elaborated above, this function can be accounted for by

the effect of mirror image forces for small film thicknesses (small

contact impedances) and by the presence of thermionic emission,

which must be taken into account for high contact impedances (large

film thicknesses). When this MDM contact is irradiated with radia-

tion with X-10.6 micrometers, the signal polarity was observed to

vary only for small contact impedances. Evidently, the absence of
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change in polarity for large contact impedances can be accounted

for by a reduction in the effect of the thermionic emission current

when the wavelength is shortened.

AU 01~2 r

ID
0

0 0:

- ZO^ ko*

Fig. 2

Since the time constant of the RC junction depends strongly

on the dielectric film thickness, as to be expected, for small

contact impedances the rise time of the detected pulse front was

small (less than 10-7 s). As the contact impedance was increased,

this time rose to 10- 4 to 10-3 s. These functions were analogous

for both cases of irradiation.
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DIELECTRIC WAVEGUIDES
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CALCULATION OF MULTILAYER DIELECTRIC WAVEGUIDE

G. D. Rozhkov, A. S. Belanov, and V. F. Vzyatyshev

Use of Dielectric Waveguides in Submillimeter Wave Band

Several factors at present impede the broad application of

dielectric waveguides in the submillimeter wave band. Of these,

the increase in attenuation and the need to reduce the trans-

verse dimensions of dielectric waveguides in order to retain

the single wave mode are leading barriers.

Attenuation in dielectric waveguides, although slower than

in hollow metal waveguides, intensifies with shortening of the

wavelength. Given existing materials, with consideration of

losses of the order of 2.10 4 , for single wavelength waveguides'

it reaches a value of 6-10 dB/m, somewhere on the boundary between

the millimeter and the submillimeter bands.

Accordingly, in order to employ dielectric waveguides in

the submillimeter band, first of all a considerable reduction

in attenuation must be attained in these waveguides. One possible

way of solving this problem consists of using dielectric waveguides

made of special materials. In fact, because of features of the
1I

This refers to dielectric waveguides with considerable delay,
which can be attained by bends and twists.
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mechanism of propagation in dielectric waveguides C62], thermal

losses in the wavegulde material is the main cause of attenua-

tion, so that attenudtion is proportional to the material loss

angle.

Is there a possibility of reducing the loss angle of mater-

ials in the millimeter and submillimeter bands? Specialists on

electrical properties of dielectrics believe that these possibi-

lities undoubtedly exist [63]. As early as 1964, polyethylene

with tan 6=2.7*10 - 5 at the frequency of 55.2 GHz [64] was pre-

pared. But if this loss angle persists up to the frequency
300 GHz, dielectric waveguides made of this material would have
an attenuation of about 1 dB/m at a wavelength of 1 mm.

Of late there have been reports about studies conducted by

several British companies aimed at finding special materials for

dielectric waveguides exhibiting much lower losses in the sub-

millimeter band than known materials. The first achievements

in this direction are reported in [65].

But even if materials with loss losses were prepared, the

difficulties involved with the small cross-sectional dimensions

will remain. These dielectric waveguides will be difficult to

fabricate with the necessary tolerances complied with. In addi-

tion, for small dimensions of the dielectric waveguides the

mating of waveguide leads of individual assemblies when devices

are constructed of these will be difficult.

Specific difficulties also stem from the fact that when any

external objects are brought close to dielectric waveguides, for

reinforcement, for example, an external electromagnetic field of

the dielectric waveguide will be excited and additional losses and

radiation will appear. Satisfactory solutions to the problem of

reinforcement have been found in the millimeter band by means of

members made of foamed materials, and also with metal members.
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In the submillimeter band, members made of foamed materials can

become unsuitable because of the commensurability of their pore

size and the wavelength, while ohmic losses increase drastically

in the metal reinforcement members.

Since dielectric waveguides as such, especially when made of

polymeric materials, exhibit low rigidity and become very diffi-

cult in imparting mechanical stiffness to devices on the dielec-

tric waveguides, or the stability of the mutual arrangement of

the dielectric waveguides in sections with space coupling.

It is known [66j that retaining the single wavelength mode

requires that in the dielectric waveguide the so-called reduced

dimension

not exceed some value that is critical for the higher wavelength

types. From Eq. (1) it follows that the physical dimension of

the dielectric waveguide d can be increased if the dielectric

constant of the dielectric waveguide material cI is made smaller.

Unfortunately, the minimum value of e of known homogeneous solid

dielectrics is close to 2. But using porous materials of the

foamed polystyrene type is hampered owing to the need to produce

pores with a diameter much less than the wavelength, and also

because the latter are not rigid enough.

However, there is another possibility of increasing the

transverse dimensions of the dielectric waveguides. It consists

of increasing the dielectric constant of the external medium 2

in Eq. (1). In practice, this corresponds to the transition

to a multilayer dielectric waveguide.

Multilayer Dielectric Waveguides

A rod of a material with e in a massive homogeneous shell

of material with e2 is the simplest example of this kind of
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of dielectric waveguides. If this dielectric waveguide is con-

structed, for example, of polyethylene (e1=2.28) in a teflon

jacket (s2=2.08), the transverse dimensions of the rod jacket

can be increased by roughly threefold compared with the case

of locating it in air (c2=1).

When a multilayer dielectric waveguide is used, it is also

easy to solve the reinforcement problem, since the field in the

jacket rapidly fades with increasing distance from the rod. The

mating problem is also eased. However, if the jacket surrounds

the dielectric waveguide core on all sides, access to the exter-

nal field of the dielectric waveguide is impeded, as is the

adjustment of the parameters of devices with space coupling.

We must not forget that, in addition to the useful effect,

the increase in the transverse dimensions of the guide rod and

the field region, the directional properties are degraded in the

dielectric waveguide jacket. They can be characterized by the

delay factor h with respect to the external medium, which cannot

be larger than the quantity -,-I , and in the single wave-

length mode generally it cannot exceed the quantity 7 , 4/2

For example, in the above-discussed variant of a polyethylene-

teflon dielectric waveguide 4 j3Z.

The poor directional properties of the multilayer dielectric

waveguide will be exhibited in that radiation at the bent sections

will be induced even when the radii of curvature are very large.

in this case, the most significant fact may be that the total

(for radiation and thermal) angular attenuation for a section

bent with the radius R

0' ' 0. C ,. (2)

as shown in [66] cannot be smaller than some minimum quantity

Ofop , attained when there is an optimal bending radius R .

Let us evaluate these quantities.
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For angular attenuation that arises due to radiation in

dB/rad, from [66,67 we have

where ; is the delay of a wave with respect to the medium with

S 2

°. %A is the relative radius of bending in wavelengths in the
ambient medium An

For thermal attenuation (in dB/unit of length), from [66]

we can write

.4. A1 m r.~*6K (4i)

where 6 and 6 are the loss angles in the media with eI and c1 2 12
k and k2 are the structural attenuation coefficients. In our

case, vq-e ; here, K,.1r1. independently of the shape of

the waveguide cross section and independently of its dimensions.

If we further set d.6&S.6 , relation (4) becomes

Or A (5)

By substituting Eqs. (3) and (5) in Eq. (2) and differentia-

ting with respect to R, for we get

.qoa/ OP Ayo (6)

where y is a root of the equation

By substituting Eqs. (6) and (7) in Eq. (2), we have
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Fig. 1

The quantities R,, (Fig. a) and , (Fig. b) as func-

tions of 7. are presented in the plots in Fig. 1. From the plots

we see that, given the existing materials (tan 6=210- 4), the

minimum losses in bending become unacceptably large even when

7,4W (larger than 2 dB/900). Here the optimal radius of bend-

ing is about 220X 2 and is obviously applicable only in the short-

wave part of the submillimeter band (when X=0.3 mm and e2=2.08,

R..- 45 mm).

Bending losses can be reduced considerably when tan 6 is

made smaller. Thus, when tan 6=5-10- 7 , even the quantity

j," 4S.0 is applicable, which corresponds to 4/4*0:t and

makes it possible to increase the transverse dimensions by about

tenfold compared with the dielectric waveguide in air. But the

bending radii required in this case (R'8.103) obviously are
2
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unacceptable through the submillimeter band (even when X=0.1 mm

and e=2.08, R,,=540 mm).

Thus, by applying the simplest variant of a multilayer dielec-

* tric waveguide in a situation when it must be subjected to bends,

* a substantial (by an order of magnitude) gain can be attained in

* the transverse dimensions only in the optical and in the near

infrared regions, and even then under the condition that the loss

angle of the materials will be not higher than 10- 6 to l0- 7 .

The transition to the multilayer dielectric waveguide with

a heterogeneous jacket opens another possibility of controlling

waveguide parameters. By varying the dimensions of the indivi-

dual regions of the Jacket and the parameters of their materials,

we can vary the properties of the dielectric waveguide over wide

limits and achieve the combination of materials that cannot be

achieved with a dielectric waveguide with a homogeneous jacket.

Let us refer to this kind of multilayer dielectric waveguide with

a heterogeneous jacket as a "composite" type.

"Composite" Dielectric Waveguides

A composite dielectric waveguide is a rod made of a material

with E1 >E2>E3, abutting on several sides a material with e2' and

in the remaining sides, with a medium that has E3, for example,

with air. Some examples of these dielectric waveguides are

satisfactorily described with models shown cross-sectionally in

Fig. 2.

As will be shown below, the dimensions of the rod of this

kind of dielectric waveguide, when the single wavelength mode is

retained, can be nearly as large as the rod dimensions for a homo-

geneous jacket with e2" On the other hand, when c l 1 , this kind

of dielectric waveguide has a free access to the external field.

But the feature of the behavior of the composite dielectric
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waveguide in curved sections is the most attractive. Radiation

from a bend of this dielectric waveguide must depend on the direc-

tion of the bend. In this case it can be expected that radiation

from a bend such that the free side of the rod is the external

side is determined by the delay factor 7' with respect to a medium
with F3 Then the dimensions of thIs bend can be considerably

3.
less than for a dielectric waveguide in a homogeneous jacket with

E2"

Unfortunately, a rigorous calculation of the characteristics

of the composite dielectric waveguides is exceptionally cumbersome.

Because of additional interfaces, this calculation must be much

more complicated than the calculation of a rectangular dielectric

waveguide with a homogeneous Jacket. The so-called asymmetric

plane dielectric waveguide, a dielectric layer with cl, a thickness

2a, and whose-medium on one side has the dielectric constant E 3 '

and on the other, e2' is a relatively simple model satisfactorily

describing this dielectric waveguide when *aa.

20

Fig. 2

Analysis of the asymmetric plane dielectric waveguide is re-

ported by the studies [68,69]. We carried out a numerical solu-

tion of the characteristic equation and calculated the wave numbers,

the constant of propagation, the effective field dimensions on both
sides of the wafer, and the structural attenuation coefficients due

to losses in the wafer material and in the adjacent media for the
waves H1 , H2, H3, and El, E2, E3, and the following parametric

ratios:
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£~~a4S; ~ j~4. .44;O
E,2, 1; 44; 1.05; 1.3; and 2.08;

1- 3,9; - I; ES -1; 1.05 and 2.08 over a

wide range of values of the reduced wafer thickness.

Lacking the possibility of presenting all the results in

this present study, we give just the dispersion characteristics

for the case e1=2.28 (polyethylene); e3=l; e2=2.08 (teflon).

They are noted with the symbol m in the plots in Figs. 3 and 4.

The upper curves correspond to the E wave in Fig. a and to the

H1 wave in Fig. b, and the lower curves, to the E2 and H2 waves.

The quantity U in the plots, the delay factor of the wave with

respect to the medium with E3) is associated with the earlier

* discussed quantity , by the relationship
fC

As can be seen from the plots, the quantity U satisfies the in-

equalities

(10)

here executing the leftmost equality in Eq. (10) corresponds to

the critical frequency, and of the rightmost equality, to infi-

nitely large frequencies. The physical meaning of the leftmost

inequality in Eq. (10) corresponds to the case when the wave field

in a medium with e2 decays exponentially with increasing distance

from the guide rod with e1; when it is not satisfied, the field in

a medium with e2 will taken on the form of plane waves propagating

at some angle to the z-axis and entraining energy from the guide

rod.
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Relative Dimensions and Band Dimensions of an Asymmetric
Plane Dielectric Waveguide

Analysis of the critical conditions for the nearest highest

wave type shows that the wafer thickness, at parameters character-

istics of the curves in Figs 3 and 4, can be chosen at values

that are larger by a factor of 3.5 to 3.6 than the thickness of

the wafer in air (c1=2.28; E2=l). Interestingly, in the case of

a homogeneous setting (EZ2.28; E 2 =e3 =2.08) an increase in wafer

thickness of only a factor of 2.5 (by 30 percent less) is possible.

It is interesting also to compare the band properties of these

dielectric waveguides. Considering that the minimum wavelength of

the band A,., corresponds to the critical conditions of the nearest

highest wave type and assuming that at the maximum wavelength, the

delay 71 must be equal to some minimum value , for the band

overlap factor Vw Jw/.. we have

4;. (11)

Assuming in this case 7,,.=0.02, for the asymmetric dielectric

waveguide we have D H=1.67 and DE =1.58, while for the symmetric

variant Dl=1.56 and DE =1.49 (91 to 11 percent less).

Thus the plane asymmetric dielectric waveguide will exceed

the symmetric variant both with respect to the allowable trans-

verse dimensions and with respect to the width of the working band.

Possibilities of Approximate Calculation

To calculate the models in Fig. 2 that are closer to the actual

situation, we can employ an approximate approach first described by

V. Shlosser in [70] and widely used by Ye. Markatili in [73]. It

is described in detail also in the review [72]. This approach is

based on the assumption that the fields in the regions 1xf.a and

IyI.5 can be described with a single trigonometric function within
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the rod and by a single exponential function outside the rod, and

with fields in the region Ix/d;. lyM& need not generally interest

us. In [711 it is shown that this approach for small El yields

satisfactory results, especially in the region that is far-removed

from the critical frequency.

The characteristic equation derived by the method described

can be represented in the form

V P(12)

where 8 is a dimensionless internal wave number [661 of a plane

dielectric waveguide with thickness 2b made of a material with

E: in a medium with c2' in the case of model I, and in a medium

with c2, in the case of model 2; and U, is the delay coefficient

(with respect to a medium with e3) of the above-examined plane

asymmetric dielectric waveguide.

The results of calculating the delay with respect to Eq. (12)

for dielectric waveguides with different b/a ratios are presented

in Figs. 2 and 4.

The symbols for both wave types, as in [72], are as follows:

the letter symbol [E] gives the field (in this case, electric),

with respect to which the polarization direction is estimated;

the letter superscript (x or y) gives the coordinate axis in

whose direction the indiicated field is generally polarized; the

numerical subscripts give the number of field variations in the

directions of the corresponding coordinate axes.

It is to be expected that the accuracy of these results im-

proves as U grows larger. The values UV1- (dashed sections of

the curves) will contradict the physical considerations, since

the waves traveling with a delay &JcVr must radiate.

Estimates of the width of the working band based on criterion

(11) show that it decreases with decrease in b/a. When b/a=2, the
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decrease is not large and amounts to 2-7%. When b/a=0.5, model 2

is a much more advantageous model from the standpoint of band

properttes.
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EXPERIMENTAL STUDY OF A COMPOSITE DIELECTRIC WAVEGUIDE

V. F. Vzyatyshev, G. D. Rozhkov, and B. A. Ryabov

Formulation of Problem

When any microwave transmission line is investigated, it is

necessary first to establish the conditions for single-wavelength

or a virtually single-wavelength operating conditions and to study

the main characteristics (delay, attenuation, and distribution of

field) of the waves under these conditions. A method for the ex-

perimental resolution of these problems as applied to dielectric

waveguides has been worked out (see [73,74]).

One feature of setting up experiments with a composite dielec-

tric waveguide consists of the fact that at the present time there

are still numerous assemblies (exciters, bends, and so on) that are

needed for known methods of measuring. So we were compelled to

work out a special method of measuring, using the minimum number

of assemblies that are simplest in a design sense.

At the first stage we set up two main goals.

1. Investigation of the dispersion characteristics of the

lower wave types.
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2. Investigation of the behavior of these waves at the bend

sections.

Fig. 1

The cross section of the waveguide investigated is shown in

Fig. 1. Rod 1 is made of polyethylene (e 1=2.28) and has the dimen-

sions 10x4.5 m. It is a rectangular PDV-12 dielectric waveguide

that is truncated to make one of its faces planar [73]. Region 2

is made of teflon (e2=2.08) and has the dimensions 10x40 mm2.

This waveguide configuration is advantageous in that it provides

for access to the external field of the dielectric waveguide from

three sides.

Dispersion Characteristics

This investigation was conducted with a dielectric resonator

and following the method described in [73,74], in the wavelength

band from 4 to 10 mm. Serving as the resonator was a section of

the above-described composite dielectric waveguide, 120 mm long,

placed between a solid and a gridded reflector. The resonator

is excited through the gridded reflector with the open end of a

rectangular dielectric PDV-8 waveguide, with a cross section of

6.7x3.35 mm 2 . The back wave is branched with a balanced wave-

guide Joint on this same waveguide.

It was found that when the exciting dielectric waveguide is

placed opposite the midsection of the teflon plate, a large number

of resonances, partially superimposing on each other, is observed.
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Identification of the type of these oscillations was made

difficult owing to the high concentration of their field in the

dielectric. When the exciting dielectric waveguide is placed

opposite the polyethylene rod, the intensity of most resonances

is reduced, and the intensity of resonances corresponding to the

wave types we are interested in is even increased.

The longitudinal order of the resonance oscillation, N, the

number of half-waves accommodated along the resonator length L,

is determined with an electrical probe, and the resonance frequency

f., with a wavemeter. Delay with respect to air is then calculated

based on the relationship

vA' (1)

where C is the speed of light.

Polarization of the electric field of the observed oscilla-

tions and the number of its variations are determined with a thin

plate made of metallized mica.

The experimental results are shown with curves marked by

circles in Fig. 2. Also shown there are the calculated results

obtained with the approximate method described in [118] (solid

curves in the upper part of the plot). The symbols for the wave

types correspond to those in [118]. Clearly, the discrepancy

of the experimental results and the calculation is very substan-

tial. Admittedly, the experimental waveguide (Fig. 1) differs

from the calculation models (Fig. 1 in [118]), but this difference

is generally not taken into account in the approximate calculation

method.

The most characteristic experimental fact is the detection of

waves with .the delay U'VZ. This fact, which at first glance con-

tradicts the physical principles advanced in [118], is easily ex-

plained if we consider that the region with e2 has a finite height
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Fig. 2

(10 mm). So the waves entraining energy from the polyethylene rod

at frequencies lower than the critical frequency must be not plane

waves in an unbounded medium, but waves in the dielectric plate

(e2 =2.08; 2b=10 mm). The dispersion characteristics of these

waves are indicated with solid curves in the lower part of the

plot in Fig. 2. The symbols for these waves correspond to those

in [66]. From the plots we see that some experimental points are

below these curves, although from physical considerations it follows

that they always must be higher and can be approached only in the

critical-frequency region. But this fact cannot be accepted as

proven, since the discrepance falls within the limits of experi-

mental error (about 2.10-3), the calculation (about 5-10-9), and

the dielectric constant of teflon (about 5-10- 3).

Behavior of Waves at Bend Sections

The measurements were made in the wavelength band of 3.9 to

5.7 mm using the following method.
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Fig. 3a

The transmission coefficient of the waveguide line consisting

of a 1 m long section of a polyethylene PDV, with transverse dimen-

sions of 10x4.5 mm, the midsection of which can be converted, by

bringing up a rectangular teflon plate (Fig. 3a) or shaped teflon

plates (Fig. 3b), into a section of a linear or a bent composite

dielectric waveguide and two exciters in the form of smooth wave-

guide metal tapers with a 3.6xl.8 mm 2 cross section for a section2

with the dimensions of 5.5xll mm and a 100 mm length. The entrance

and exit sections of the taper are turned by 900 in order for the

electric field in the output section to be oriented parallel to its

large side.

_junctions &-i.ja

Fig. 3b and 3c
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Losses in a line made up of a PDV with tapers for a wavelength

of 3.9 mm came to about 6 dB. With the thermal losses in the dielec-

tric waveguide material and in the tapers subtracted, the losses in

excitation are about 1.2 dB per exciter. As the wavelength is made

larger, the losses are reduced. In order to reduce the relative

amplitude of the higher-type waves, special filters are inserted

near the exciters. By applying an attenuation of about 5dB on the

principal wave type, the filters serve simultaneously for decoupling

the members being measured, the generator and the detector.

It was established that the PDV bends in the plane of its

smaller facet with radii to 6 cm for an angle to 1800 do not intro-

duce additional losses of more than 0.8 dB. The losses observed

do not depend monotonically on the angle of bending. Probably they

are associated with the conversion to higher-type waveguide waves.

The main result of the measurements is the losses when shaped

teflon plates (Figs. 3b and c) are brought up to the bent section

of the PDV. This section is thus converted to a bent section of

a composite dielectric waveguide (a bend of the kind shown in

Fig. 3b, when the material with E2 is in the external side of the

bend, we call an external bend, and a bend of the Fig. 3c type, an

i-ternal bend). It was found that the losses, especially in the

external bend, depend strongly on the gap between the PDV and the

plate. So measures were adopted to reduce the gap.

Since during transit through the section with the plate at

the mating of the dielectric waveguide with the composite dielec-

tric waveguide there must be some conversion into both the higher-

type waves and into radiation waves, the characteristics of this

converter were measured separately. To do this, the transmission

coefficient was plotted as a function of the distance between the

PDV and the Fig. 3a plate brought up to the PDV, so that on touch-

ing, the composite dielectric waveguide of Fig. 1 was constructed.

This function in all cases proved to be monotonic, with the addi-

tional losses not exceeding 0.5 dB, X-5.7 mm, and 0.2 dB, A=3.9 mm.
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Additional losses in the internal bend cannot be measured

exactly because during the bringing up and pressing up of shaped

plates, the position of the PDV ends in the exciters and the losses

in excitation are changed. However, it can be ensured that addi-

tional losses do not exceed 1 dB at the wavelength of 5.7 mm and

even less so at shorter wavelengths.

In the external bend, as to be expected [118], the losses

prove to be much larger. They increase with increase in wavelength

and amount to 20 dB at A=3.9 mm and to 35 dB at X=5.7 mm.

Thus, the composite dielectric waveguide with heterogeneous

surrounding media actually has certain advantages when compared

with the multilayer dielectric waveguide in a homogeneous setting.
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DIELECTRIC WAVEGUIDE-BASED WAVE TYPE CONVERTER

A. N. Merkur'yev

Approach to Converter Analysis

As we know, when another single wavelength dielectric waveguide

brought up to the wave field propagating along a first single wave-

length dielectric waveguide, energy branches from the first to the

second. Phenomena in this system can be described, with an accu-

racy suitable for a number of practical cases, with the theory of

bound waves [75]. It is shown in [76] that the level of energy

interchange between the dielectric waveguides is determined by the

ratio 2c/Ay, where c is the linear coupling coefficient (LC) between

the waves, and Ay is the difference of their constants of propaga-

tion. If Ay=O, there may be total branching of energy from the

initially excited dielectric waveguide into the second waveguide;

this will occur when

where L is the coupling section length.

But if Ay#0 and 2c/Ay<<l, as follows from [76,79], the frac-

tion of energy branching into the second dielectric waveguide will

not exceed (2c/Ay)2 . This fact, first pointed out in [75] as applied
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to hollow metal waveguides, then can be used in converting the

principal wave of the single wavelength dielectric waveguide,

for example, a multiwavelength dielectric waveguide, in particular,

to an H0 1 wave of the circular dielectric waveguide.

Analysis of phenomena in the system of coupled single

wavelength and multiwavelength dielectric waveguides is hampered

by the fact that, since a single wavelength transmission line must

be brought into correspondence with each propagating wave type,

the number of differential equations in their system describing

the coupling of the dielectric waveguides is relatively large,

so that numerical methods must be used in the solution. The ana-

ljsis can be simplied with allowance for the fact that the wave

type converter must operate with minimum losses, that is, in it

4there must be a substantial coupling of the wave from the single

wavelength dielectric waveguide only with a single wave type from

the multiwavelength dielectric waveguide; coupling with other wave

types, as an unwanted phenomenon degrading the device characteris-

tics, must be brought to a minimum.

Obviously, this can be achieved by selecting the cross-sec-

tional dimensions and the dielectric constant of the dielectric

waveguide so that there is an equality of the constants of propa-

gation of the converted wave types, and by reducing the linear

coupling coefficient; this requires making the distance between

the dielectric waveguides quite large [77].

Further, to describe the phenomena in the dielectric wave-

guide system we can use the approach presented, for example, in

[78), that is, we can simultaneously examine the coupling of only

two specified wave types without allowing for the transformation

into parasitic wave types, and the latter can be estimated by the

weak coupling method. To do this, the results obtained in [79] can

be used directly in calculating the converter characteristics;
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this however presupposes a knowledge of the linear coupling coeffi-

cient. Since it is not possible to calculate the linear coupling

coefficients, we calculate them, more precisely, the linear coupling

coefficients of the principal HE wave of the PDV and the H wave01of the KDV, experimentally.

.PDV .KDV
Measuring the Linear Coupling Coefficients of Waves HEDV and HD1

The experimental estimate of the linear coupling coefficients

is conveniently done by investigating the characteristics of an

adjustable converter mockup. The measurements were made according

to the diagram in Fig. 1. The converter I as such consists of a

KDV section 4.35 mm in diameter and a PDV section, with a cross

section of 2.90xl.45 mm2 , parallel for a coupling section 280 mm

long. These measurements of the dielectric waveguide sections

provide, as is clear from the dispersion curves in Fig. 4, an equa-

lity of delays =X/Xb-1 (Ab is the wavelength in the dielectricb- bPDV KDV
waveguide) for the waves HEll and HV01 in the wavelength band

)t5.1 mm. In this case (see Fig. 2), in addition to the principal

wave HE,, and the wave H0T, two more wave types can be propagated

in the KDV: E01 and HE 2 1. Coupling with the first of these, E0 1,

is eliminated by selecting the mutual positioning of the dielec-

tric waveguides such as in shown in the field in Fig. 3. In the

Fig. 1 diagram the reflection coefficient of the converter is

measured (reflector 2 is connected to the KDV of this converter).

The following adjustments are possibled in the converter: varying

the distance t between the dielectric waveguides (see Fig. 3) and

shifting one dielectric waveguide along the other with constant t.

Both adjustments were made without changing the length of the coup-

ling section.

As shown by the experiment, when one dielectric waveguide is

shifted along the other, the reflection coefficient rapidly oscil-

lates; a slow aperiodic change is superimposed on the oscillation.

The latter is evidently caused by some disturbance in the parallelity

of the dielectric waveguides when they are shifted. Rapid
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oscillations are explained by the interference in the detector of

two (or possibly several) reflected waves. It turned out that near

X=5.1 mm, when t>2.5 mm, the period of oscillations corresponds to

the delay of the H0 1 wave in the KDV. Therefore, in the converter

there must actually be the predominant coupling with the H0 1 wave

in the KDV, and the oscillations are caused by the interference

of the wave with the variable phase reflected from the converter,

and the wave with a constant phase, caused by a nonideal matching

of the arrangement elements.

PDV~

PDVV

Fig. 1

1. adjustable converter 6. attenuator
2. reflector 7. generator
3,4. tapers to the PDV from 8. recording microammeter

metal waveguides 9. amplifier
5. bridge (3 dB) for the PDV

The reflection coefficient as functions of the distance t

between the dielectric waveguides in accordance with [77] is

oscillatory. Applying the method given in [77], from these func-

tions we found the linear coupling coefficients of the waves
PDV and HKDV whose plots are shown in Fig. 3.
E11  01
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Fig. 2

1. KDV 4. housing

3. spport 5. tuning screw

Fig. 3
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Construction and Characteristics of Converter

HPDV an KDVFurther study of a converter of .1V 02 ave types

was made with a nonadjustable mockup (see Fig. 2). In it use

was made of the dielectric waveguides of the same transverse

dimensions and the same waveguide positioning as in the adjustable

converter mockup. The dielectric waveguides were mounted in foam

plastic supports. The ends of the dielectric waveguides were

smoothly diverted from each other.

KDVW

t KDV

Fig. 4

In trying to attain small device dimensions, we selected the

distance between dielectric waveguides t=2 mm. Further, on the

basis of Fig. 3 and condition (1) for M=0, we found the length of

the coupling section, L-90 mm.

The shape of the PDV axis in the coupling section can be

modified somewhat with a tuning screw, attaining the maximum trans-

mission coefficient.

In tuning, the two converters were connected in a cascade

manner. By rotating the tuning screws, the minimum losses A
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was attained, defined as the ratio of the input signal strength to

the output signal strength. The plot of the minimum losses 4
min

for a single converter as a function of wavelength is presented

in Fig. 5. The quantity Amin has its smallest value at X=4.7 mm,

and not at X=5.1 mm, as would be expected on the basis of Fig. 4.

The concern evidently is that, for total interchange of energy, it

is required to have an equality of velocities of propagation of

the coupled waves; this occurs at the point of the frequency scale

not coinciding with the equality point of the phase velocities of

the waves in the connected dielectric waveguides; and it does so

the more strongly, the closer the coupled dielectric waveguides

are to each other.

45 t7 40 Sim

Fig. 5

When the frequency characteristic was being recorded, as before

the two converters were connected cascadewise. The losses for a

single converter as a function of wavelength A(X) during the tuning

of the converters at X0=4.7 mm is shown in Fig. 6. In the region
X=4.25 mm we observed a second hump of the frequency characteristic;

this apparently is caused by the amplification of the coupling of
the PDV wave HEll and of the KDV wave HE21 . The concern is that,
as shown experimentally, even at the wavelength 4.7 mm, the principal
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PDV wave is partially converted to an HE21 wave existing in the

KDV together with the H01 wave, and with a reduction in X , the01PDV KDV
weakening of the coupling of the HE11  wave with the HV01 wave

is partially compensated by an amplification of the coupling of
.PDV ,KDV

the HEPDV and the HE21 waves.

Thus, the minimum, losses occur at the wavelength of 4.7 mm

and amount to 2 dB. In the wavelength band from 4.6 mm to 4.85 mm
the losses do not exceed 3 dB. In this mockup, conversion of the

KDV HE wave to the parasitic type was noted.
21

Fig. 6
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